Solar Filament Recognition Based on Deep Learning

被引:0
|
作者
Gaofei Zhu
Ganghua Lin
Dongguang Wang
Suo Liu
Xiao Yang
机构
[1] Chinese Academy of Sciences,National Astronomical Observatories
[2] University of Chinese Academy of Sciences,Key Laboratory of Solar Activity
[3] National Astronomical Observatories,School of Astronomy and Space Sciences
[4] University of Chinese Academy of Sciences,undefined
来源
Solar Physics | 2019年 / 294卷
关键词
Filaments; Prominences; Image processing; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a reliable method using deep learning to recognize solar filaments in Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} full-disk solar images automatically. This method cannot only identify filaments accurately but also minimize the effects of noise points of the solar images. Firstly, a raw filament dataset is set up, consisting of tens of thousands of images required for deep learning. Secondly, an automated method for solar filament identification is developed using the U-Net deep convolutional network. To test the performance of the method, a dataset with 60 pairs of manually corrected Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images is employed. These images are obtained from the Big Bear Solar Observatory/Full-Disk H-alpha Patrol Telescope (BBSO/FDHA) in 2013. Cross-validation indicates that the method can efficiently identify filaments in full-disk Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images.
引用
收藏
相关论文
共 50 条
  • [41] Classroom Expression Recognition Based on Deep Learning
    Gao, Yang
    Zhou, Linyan
    He, Jialiang
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [42] Deep Learning Based Latent Palmprint Recognition
    Selbes, Berkay
    Elihos, Alperen
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [43] A survey for table recognition based on deep learning
    Yu, Chenglong
    Li, Weibin
    Li, Wei
    Zhu, Zixuan
    Liu, Ruochen
    Hou, Biao
    Jiao, Licheng
    NEUROCOMPUTING, 2024, 600
  • [44] A survey on deep learning based face recognition
    Guo, Guodong
    Zhang, Na
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 189
  • [45] Research on Face Recognition Based on Deep Learning
    Han, Xiao
    Du, Qingdong
    2018 SIXTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION, NETWORKING, AND WIRELESS COMMUNICATIONS (DINWC), 2018, : 53 - 58
  • [46] Gait Recognition Based on Deep Learning: A Survey
    Goncalves Dos Santos, Claudio Filipi
    Oliveira, Diego De Souza
    Passos, Leandro A.
    Pires, Rafael Goncalves
    Silva Santos, Daniel Felipe
    Valem, Lucas Pascotti
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Roder, Mateus
    Papa, Joao Paulo
    Colombo, Danilo
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [47] Motion Recognition Based on Deep Learning Algorithm
    Wang, Xue
    Liu, Li
    Zhang, Yingxing
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (14)
  • [48] Object detection and recognition using deep learning-based techniques
    Sharma, Preksha
    Gupta, Surbhi
    Vyas, Sonali
    Shabaz, Mohammad
    IET COMMUNICATIONS, 2023, 17 (13) : 1589 - 1599
  • [49] Jellyfish Recognition and Density Calculation Based on Image Processing and Deep Learning
    Liu, Yang
    Meng, Wei
    Zong, Humin
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 922 - 927
  • [50] Blurred License Plate Character Recognition Algorithm Based on Deep Learning
    Zhang Caizhen
    Li Ying
    Kang binlong
    Chang yuan
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)