Solar Filament Recognition Based on Deep Learning

被引:0
|
作者
Gaofei Zhu
Ganghua Lin
Dongguang Wang
Suo Liu
Xiao Yang
机构
[1] Chinese Academy of Sciences,National Astronomical Observatories
[2] University of Chinese Academy of Sciences,Key Laboratory of Solar Activity
[3] National Astronomical Observatories,School of Astronomy and Space Sciences
[4] University of Chinese Academy of Sciences,undefined
来源
Solar Physics | 2019年 / 294卷
关键词
Filaments; Prominences; Image processing; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a reliable method using deep learning to recognize solar filaments in Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} full-disk solar images automatically. This method cannot only identify filaments accurately but also minimize the effects of noise points of the solar images. Firstly, a raw filament dataset is set up, consisting of tens of thousands of images required for deep learning. Secondly, an automated method for solar filament identification is developed using the U-Net deep convolutional network. To test the performance of the method, a dataset with 60 pairs of manually corrected Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images is employed. These images are obtained from the Big Bear Solar Observatory/Full-Disk H-alpha Patrol Telescope (BBSO/FDHA) in 2013. Cross-validation indicates that the method can efficiently identify filaments in full-disk Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images.
引用
收藏
相关论文
共 50 条
  • [1] Solar Filament Recognition Based on Deep Learning
    Zhu, Gaofei
    Lin, Ganghua
    Wang, Dongguang
    Liu, Suo
    Yang, Xiao
    SOLAR PHYSICS, 2019, 294 (09)
  • [2] Solar-Filament Detection and Classification Based on Deep Learning
    Guo, Xulong
    Yang, Yunfei
    Feng, Song
    Bai, Xianyong
    Liang, Bo
    Dai, Wei
    SOLAR PHYSICS, 2022, 297 (08)
  • [3] Solar-Filament Detection and Classification Based on Deep Learning
    Xulong Guo
    Yunfei Yang
    Song Feng
    Xianyong Bai
    Bo Liang
    Wei Dai
    Solar Physics, 2022, 297
  • [4] Solar Filament Detection Based on an Improved Deep Learning Model
    Shang, Zhenhong
    Song, Mingzhao
    Li, Runxin
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [5] A Method of Go Recognition Based on Deep Learning
    Ran, Heng
    Song, Pengyun
    Liu, Yanghui
    Yu, Lei
    Zhou, Hang
    Zhang, Yinrui
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC, CONTROL AND AUTOMATION ENGINEERING (MECAE 2018), 2018, 149 : 215 - 218
  • [6] Microorganism Image Recognition based on Deep Learning Application
    Treebupachatsakul, Treesukon
    Poomrittigul, Suvit
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [7] Type recognition of highway trucks based on deep learning
    Zhang N.
    Zhang L.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2023, 23 (01): : 267 - 279
  • [8] Image Recognition Based on Deep Learning
    Wu, Meiyin
    Chen, Li
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 542 - 546
  • [9] Face Recognition Based on Deep Learning
    Wang, Weihong
    Yang, Jie
    Xiao, Jianwei
    Li, Sheng
    Zhou, Dixin
    HUMAN CENTERED COMPUTING, HCC 2014, 2015, 8944 : 812 - 820
  • [10] Plate Recognition Based on Deep Learning
    Tang, Ling
    Gao, Zhibin
    Huang, Lianfen
    PROCEEDINGS OF 2018 12TH IEEE INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2018, : 116 - 120