Random Holonomy for Yang–Mills Fields: Long-Time Asymptotics

被引:0
作者
Robert Otto Bauer
机构
[1] University of Illinois,Department of Mathematics
来源
Potential Analysis | 2003年 / 18卷
关键词
Stochastic Process; Functional Analysis; Asymptotic Behavior; Probability Theory; Euclidean Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study weak and strong convergence of the stochastic parallel transport for time t→∞ on Euclidean space. We show that the asymptotic behavior can be controlled by the Yang–Mills action and the Yang–Mills equations. For open paths we show that under appropriate curvature conditions there exits a gauge in which the stochastic parallel transport converges almost surely. For closed paths we show that there exists a gauge invariant notion of a weak limit of the random holonomy and we give conditions that insure the existence of such a limit. Finally, we study the asymptotic behavior of the average of the random holonomy in the case of t'Hooft's 1-instanton.
引用
收藏
页码:43 / 57
页数:14
相关论文
共 7 条
[1]  
Bauer R.O.(1998)Characterizing Yang—Mills fields by stochastic parallel transport J. Funct. Anal. 155 536-549
[2]  
Bauer R.O.(2000)Yang—Mills fields and the stochastic parallel transport in small geodesic balls Stochastic Process. Appl. 89 213-226
[3]  
Bismut J.-M.(1984)The Atiyah—Singer theorems: A probabilistic approach. I: The index theorem. II: The Lefschetz fixed point formulas J. Funct. Anal. 57 56-99
[4]  
Hsu E.(1997)Stochastic local Gauss—Bonnet—Chern theorem J. Theoret. Probab. 10 819-834
[5]  
Malliavin P.(1980)Sur certaines intégrales stochastique oscillantes C.R. Acad. Sci. Paris 295 295-300
[6]  
Uhlenbeck K.(1982)Connections with Comm. Math. Phys. 83 31-42
[7]  
Uhlenbeck K.(1982) bounds on curvature Comm. Math. Phys. 83 11-29