In the search for highly responsive dielectric materials, superconducting samples of type (Bi,Pb)-2223 were prepared using the standard solid-state reaction technique, with the addition of three different concentrations of ferrato and mangano-undecatungstosilicate (0.04, 0.12, and 0.20 wt%). The dielectric studies were performed by measuring the parallel capacitance Cp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{p}$$\end{document} as well as the dielectric loss factor using LCR HiTESTER. The studies were performed at temperature and frequency ranges starting from room temperature down to 98 K and from 50 kHz up to 5 MHz, respectively. The dielectric behavior was investigated by calculating both dielectric constants (ε′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon^{\prime}$$\end{document} and ε″\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon^{\prime\prime}$$\end{document}), loss tangent (Tanδ) and ac conductivity (σac) as a function of frequency, temperature and addition concentrations of the {FeSiW11} and {MnSiW11} polyoxometalates. The results revealed that the dielectric parameters decrease with increasing frequency at each temperature for all the {FeSiW11}x(Bi,Pb)-2223 and {MnSiW11}x(Bi,Pb)-2223 prepared samples. Moreover, ε′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon^{\prime}$$\end{document} and σac showed a decreasing trend with an increase in temperature in contrast to the increasing trend shown by ε″\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon^{\prime\prime}$$\end{document} and Tanδ. Additionally, ε″\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon^{\prime\prime}$$\end{document} has decreased upon increasing temperature at low frequencies. Accordingly, low {MnSiW11} addition at 0.12 wt% exhibited the highest dielectric constant 1.99×107\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {1.99 \times 10^{7} } \right)$$\end{document} and ac conductivity 61.449\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$61.449$$\end{document} (Ω.m)−1 with minimum dissipation (1.078). Furthermore, the ac conductivity was studied according to the power law, and the frequency exponent was found greater than one 1.654≤S≤1.759\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {1.654 \le S \le 1.759} \right)$$\end{document} for all the prepared samples.