On the orbifold coverings associated to integral, ternary quadratic forms

被引:0
作者
José María Montesinos-Amilibia
机构
[1] Universidad Complutense,Facultad de Matematicas
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2018年 / 112卷
关键词
Integral quadratic form; Knot; Link; Hyperbolic manifold; Volume; Automorph; Commensurability class; Integral equivalence; Rational equivalence; Projective equivalence; Bianchi equivalence; Conway’s excesses; -adic symbols; 11E04; 11E20; 57M25; 57M50; 57M60;
D O I
暂无
中图分类号
学科分类号
摘要
The group of (integral) automorphs of a ternary integral quadratic form f acts properly discontinuously as a group of isometries of the Riemann’s sphere (resp. the hyperbolic plane) if f is definite (resp. indefinite) and the quotient has a natural structure of spherical (resp. hyperbolic) orbifold, denoted by Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document}. Then fis aB-covering of the formg if Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document} is an orbifold covering of Qg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g}$$\end{document}, induced by T′fT=ρg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T^{\prime }fT=\rho g \end{aligned}$$\end{document}where T is an integral matrix and ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} is an integer. Given an integral ternary quadratic form f a number Πf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{f}$$\end{document}, called the B-invariant of the form f, is defined. It is conjectured that if f is a B-covering of the form g then both forms have the same B-invariant. The purpose of this paper is to reduce this conjecture to the case in which g is a form with square-free determinant. This reduction is based in the following main Theorem. Any definite (resp. indefinite) formfis aB-covering of a, unique up to genus (resp. integral equivalence), formgwith square-free determinant such thatfandghave the sameB-invariant. To prove this, a normal form of any definite (resp. indefinite) integral, ternary quadratic form f is introduced. Some examples and open questions are given.
引用
收藏
页码:717 / 749
页数:32
相关论文
共 27 条
  • [21] On primitively universal quadratic forms
    N. Budarina
    Lithuanian Mathematical Journal, 2010, 50 : 140 - 163
  • [22] The representation of quadratic forms by almost universal forms of higher rank
    Byeong-Kweon Oh
    Mathematische Zeitschrift, 2003, 244 : 399 - 413
  • [23] On locally primitively universal quadratic forms
    A. G. Earnest
    B. L. K. Gunawardana
    The Ramanujan Journal, 2021, 55 : 1145 - 1163
  • [24] On locally primitively universal quadratic forms
    Earnest, A. G.
    Gunawardana, B. L. K.
    RAMANUJAN JOURNAL, 2021, 55 (03) : 1145 - 1163
  • [25] Edge reduction for weakly non-negative quadratic forms
    H.J. von Höhne
    J.A. de la Peña
    Archiv der Mathematik, 1998, 70 : 270 - 277
  • [26] Remarks on the Surface Area and Equality Conditions in Regular Forms Part II: Quadratic Prisms
    Ahmed A. Elkhateeb
    Esraa A. Elkhateeb
    Nexus Network Journal, 2014, 16 : 467 - 485
  • [27] Remarks on the Surface Area and Equality Conditions in Regular Forms Part II: Quadratic Prisms
    Elkhateeb, Ahmed A.
    Elkhateeb, Esraa A.
    NEXUS NETWORK JOURNAL, 2014, 16 (02) : 467 - 485