On Integrability of the Camassa–Holm Equation and Its InvariantsA Geometrical Approch

被引:0
|
作者
V. Golovko
P. Kersten
I. Krasil’shchik
A. Verbovetsky
机构
[1] Lomonosov MSU,Department of Mathematics, Faculty of Physics
[2] University of Twente,undefined
[3] Independent University of Moscow,undefined
来源
Acta Applicandae Mathematicae | 2008年 / 101卷
关键词
Camassa–Holm equation; Integrability; Hamiltonian structures; Symplectic structures; Recursion operators; Symmetries; Conservation laws; Geometrical approach; 37K05; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
Using geometrical approach exposed in (Kersten et al. in J. Geom. Phys. 50:273–302, [2004] and Acta Appl. Math. 90:143–178, [2005]), we explore the Camassa–Holm equation (both in its initial scalar form, and in the form of 2×2-system). We describe Hamiltonian and symplectic structures, recursion operators and infinite series of symmetries and conservation laws (local and nonlocal).
引用
收藏
页码:59 / 83
页数:24
相关论文
共 50 条
  • [1] On integrability of the Camassa-Holm equation and its invariants
    Golovko, V.
    Kersten, P.
    Krasil'shchik, I.
    Verbovetsky, A.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 101 (1-3) : 59 - 83
  • [2] Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter
    A Durga Devi
    K Krishnakumar
    R Sinuvasan
    P G L Leach
    Pramana, 2021, 95
  • [3] Geometric Integrability of the Camassa-Holm Equation. II
    Hernandez Heredero, Rafael
    Reyes, Enrique G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (13) : 3089 - 3125
  • [4] Symmetries and integrability of the modified Camassa-Holm equation with an arbitrary parameter
    Devi, A. Durga
    Krishnakumar, K.
    Sinuvasan, R.
    Leach, P. G. L.
    PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (02):
  • [5] Backlund Transformations for the Camassa-Holm Equation
    Rasin, Alexander G.
    Schiff, Jeremy
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) : 45 - 69
  • [6] Operator-valued Camassa–Holm systems and their integrability
    Yarema Prykarpatskyy
    Myroslava Vovk
    Petro Pukach
    Letters in Mathematical Physics, 2022, 112
  • [7] Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
    da Silva, Priscila Leal
    Freire, Igor Leite
    STUDIES IN APPLIED MATHEMATICS, 2020, 145 (03) : 537 - 562
  • [8] The Modified Camassa-Holm Equation
    Gorka, Przemyslaw
    Reyes, Enrique G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2617 - 2649
  • [9] Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation
    da Silva, Priscila Leal
    Freire, Igor Leite
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5318 - 5369
  • [10] Operator-valued Camassa-Holm systems and their integrability
    Prykarpatskyy, Yarema
    Vovk, Myroslava
    Pukach, Petro
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (04)