Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model

被引:35
作者
Alidousti J. [1 ]
Ghaziani R.K. [1 ]
机构
[1] Department of Applied Mathematics, Shahrekord University, Shahrekord
关键词
bifurcation; bursting; fast-slow; FitzHugh-Nagumo model; fractional order;
D O I
10.1134/S2070048217030036
中图分类号
学科分类号
摘要
This paper reports bursting behavior and related bifurcations in a fractional order FitzHugh-Nagumo neuron model, by adding sub fast-slow system. We classify different bursters of the system consisting fold/Hopf via a fold/fold hysteresis loop, homoclinic/homolininc cycle-cycle, fold/homoclinic, homoclinic/Hopf via homoclinic/fold hysteresis loop. We determine stability and dynamical behaviors of the equilibria of the system by numerical simulations. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:390 / 403
页数:13
相关论文
共 26 条
[1]  
Diethelm K., The Analysis of Fractional Differential Equations, (2010)
[2]  
Ehibilik A.I., Borisyuk R.M., Roose D., Numerical bifurcation analysis of a model of coupled neural oscillators, Int. Ser. Numer. Math., 104, pp. 215-228, (1992)
[3]  
Ermentrout G.B., Kopell N., Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46, pp. 233-253, (1986)
[4]  
Ermentrout G.B., Type I membranes, phase resetting curves and synchrony, Neural Comput., 8, pp. 979-1001, (1996)
[5]  
Fitzhugh R., Impulses and physiological states in models of nerve membrane, Biophys. J., 1, pp. 445-466, (1961)
[6]  
Hifer R., Application of Fractional Calculus in Physics, (2000)
[7]  
Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and application to conduction and excitation in nerve, J. Physiol., 117, pp. 500-544, (1954)
[8]  
Hodgkin A.L., The local changes associated with repetitive action in a non-modulated axon, J. Physiol., 107, pp. 165-181, (1948)
[9]  
Hoppensteadt F.C., Izhikevich E.M., Weakly Connected Neural Networks, (1997)
[10]  
Izhikevich E.M., Class 1 neural excitability, conventional synapses, weakly confornected networks and mathematical foundations of pulse coupled models, IEEE Trans. Neural Networks, 10, pp. 499-507, (1999)