On the Exponential Integrability of Conjugate Functions

被引:0
作者
H. Gissy
S. Miihkinen
J. A. Virtanen
机构
[1] University of Reading,Department of Mathematics
[2] Karlstad University,Department of Mathematics and Computer Science
[3] University of Helsinki,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2021年 / 27卷
关键词
Exponential integrability; Conjugate function; Hilbert transform; Outer functions; 42A50;
D O I
暂无
中图分类号
学科分类号
摘要
We relate the exponential integrability of the conjugate function f~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{f}}$$\end{document} to the size of the gap in the essential range of f. Our main result complements a related theorem of Zygmund.
引用
收藏
相关论文
共 14 条
[1]  
Lekishvili MM(1990)Exponential integrability of a conjugate function Math. Zametki (Russian) 48 155-157
[2]  
Perälä A(2013)A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators Concr. Oper. 1 28-36
[3]  
Virtanen JA(1994)On some geometric conditions of Fredholmity of one-dimensional singular integral operators Integral Equ. Oper. Theory 20 119-123
[4]  
Wolf L(2007)A remark on the essential spectra of Toeplitz operators with bounded measurable coefficients Integral Equ. Oper. Theory 57 127-132
[5]  
Shargorodsky E(2006)Uniqueness results for the Riemann–Hilbert problem with a vanishing coefficient Integral Equ. Oper. Theory 56 115-127
[6]  
Shargorodsky E(2008)Bernoulli free-boundary problems Mem. Am. Math. Soc. 196 70-24
[7]  
Shargorodsky E(1971)Embedding in the class Math. Zametki (Russian) 10 17-91
[8]  
Virtanen JA(2004)A remark on the Riemann-Hilbert problem with a vanishing coefficient Math. Nachr. 266 85-62
[9]  
Shargorodsky E(2002)Counterexamples to two variants of the Helson-Szegő theorem. Dedicated to the memory of Tom Wolff J. Anal. Math. 88 41-303
[10]  
Toland JF(1929)Sur les fonctions conjugées Fund. Math. 13 284-undefined