Topological mappings of finite area distortion

被引:0
作者
Elena Afanas’eva
Anatoly Golberg
机构
[1] Institute of Applied Mathematics and Mechanics of the NAS of Ukraine,Department of Mathematics
[2] Holon Institute of Technology,undefined
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Riemannian manifolds; Mappings of finite area distortion; Finitely bi-Lipschitz homeomorphisms; Quasisymmetry; Quasiconformality; Quasimöbius mappings; -homeomorphisms; Moduli of families of curves and surfaces; Boundary behavior of FAD-homeomorphisms; Sobolev classes; Absolute continuity; Primary: 30L10; 26B30; Secondary: 30C65; 53B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the interplay of mappings of finite area distortion (FAD) with finitely bi-Lipschitz mappings, ring and lower Q-homeomorphisms, and absolutely continuous homeomorphisms of the class ACΛn,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{AC}^{n,p}_\Lambda $$\end{document} on Riemannian manifolds. Some additional relations to the hyper Q-homeomorphisms, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-quasisymmetric and ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-quasimöbius mappings are also established. As applications of the above results, we provide several extension conditions to the weakly flat and strongly accessible boundaries under FAD-homeomorphisms.
引用
收藏
相关论文
共 26 条
[1]  
Bishop CJ(2016)Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric space Geom. Funct. Anal. 26 379-421
[2]  
Hakobyan H(2008)Bi-Lipschitz maps in Acta Math. Sin. (Engl. Ser.) 24 1555-622
[3]  
Williams M(2016)-regular Loewner spaces Complex Var. Elliptic Equ. 61 608-1799
[4]  
Chen KY(2017)The limit mapping of generalized ring homeomorphisms Complex Anal. Oper. Theory 11 1789-224
[5]  
Fang AN(2019)A generalization of the univalence on the boundary theorem with applications to Sobolev mappings J. Math. Pures Appl. (9) 128 213-759
[6]  
Cristea M(2015)A note on the global injectivity of some light Sobolev mappings Rev. Mat. Comput. 28 741-219
[7]  
Cristea M(1957)Continuous selections of Lipschitz extensions in metric spaces Acta Math. 98 171-251
[8]  
Cristea M(2009)Extremal length and functional completion J. Anal. Math. 109 233-61
[9]  
Espinola R(1998)On Lipschitz continuity of quasiconformal mappings in space Acta Math. 181 1-189
[10]  
Nicolae A(2002)Quasiconformal maps in metric spaces with controlled geometry Fund. Math. 173 175-1366