On the average sum of the kth divisor function over values of quadratic polynomials

被引:0
作者
Kostadinka Lapkova
Nian Hong Zhou
机构
[1] Graz University of Technology,Institute of Analysis and Number Theory
[2] East China Normal University,School of Mathematical Sciences
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Divisor functions; Quadratic polynomials; Circle method; Primary 11P55; Secondary 11L07; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let F(x)∈Z[x1,x2,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x) \in \mathbb {Z}[x_1 , x_2 ,\ldots , x_n ]$$\end{document}, n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, be an n-variable quadratic polynomial with a nonsingular quadratic part. Using the circle method we derive an asymptotic formula for the sum Σk,F(X;B)=∑x∈XB∩ZnτkF(x);\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Sigma _{k,F}(X; {{\mathcal {B}}})=\sum _{\mathbf{x}\in X{\mathcal {B}}\cap {\mathbb {Z}}^{n}}\tau _{k}\left( F(\mathbf{x})\right) ; \end{aligned}$$\end{document}for X tending to infinity, where B⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}\subset {\mathbb {R}}^n$$\end{document} is an n-dimensional box such that minx∈XBF(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \nolimits _{\mathbf{x}\in X{\mathcal {B}}}F(\mathbf{x})\ge 0$$\end{document} for all sufficiently large X, and τk(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{k}(\cdot )$$\end{document} is the kth divisor function for any integer k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}.
引用
收藏
页码:849 / 872
页数:23
相关论文
共 19 条
[1]  
Blomer V(2018)Higher order divisor problems Math. Z. 290 937-952
[2]  
Browning T(2011)The divisor problem for binary cubic forms J. Théor. Nombres Bordeaux 23 579-602
[3]  
de la Bretèche R(2010)Le problème des diviseurs pour des formes binaires de degré 4 J. Reine Angew. Math. 646 1-44
[4]  
Browning TD(1999)On the divisor-sum problem for binary forms J. Reine Angew. Math. 507 107-129
[5]  
Daniel S(2006)A polynomial divisor problem J. Reine Angew. Math. 601 109-137
[6]  
Friedlander JB(1970)On the divisor-sum problem for binary cubic forms Acta Arith. 17 1-28
[7]  
Iwaniec H(2012)Some problems about the ternary quadratic form Acta Arith. 156 101-121
[8]  
Greaves G(2018)Sums of the triple divisor function over values of a quaternary quadratic form Acta Arith. 183 63-85
[9]  
Guo R(2019)A divisor problem attached to regular quadratic form Lith. Math. J. 59 169-184
[10]  
Zhai W(1985)A remark on Smith’s result on a divisor problem in arithmetic progressions Nagoya Math. J. 98 37-42