Biorthogonal Wavelet Expansions

被引:0
作者
W. Dahmen
C. A. Micchelli
机构
[1] Institut für Geometrie und Praktische Mathematik,Department of Mathematical Sciences
[2] RWTH Aachen,undefined
[3] IBM T. J. Watson Research Center,undefined
[4] Yorktown Heights,undefined
来源
Constructive Approximation | 1997年 / 13卷
关键词
Key words. Finitely generated shift-invariant spaces, Stationary subdivision schemes, Matrix refinement relations, Biorthogonal wavelets. AMS Classification. 39B62, 41A63.;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with developing conditions on a given finite collection of compactly supported algebraically linearly independent refinable functions that insure the existence of biorthogonal systems of refinable functions with similar properties. In particular, we address the close connection of this issue with stationary subdivision schemes.
引用
收藏
页码:293 / 328
页数:35
相关论文
共 50 条
[41]   Biorthogonal wavelet space: Parametrization and factorization [J].
Resnikoff, HL ;
Tian, J ;
Wells, RO .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :194-215
[42]   Extraction of faint targets with biorthogonal wavelet [J].
Wang, Ming-Jia ;
Zhang, Yan ;
Yao, Zhi-Jun ;
Wang, Yan-Jie .
Guangdian Gongcheng/Opto-Electronic Engineering, 2004, 31 (11)
[43]   CHARACTERISTICS OF BIVARIATE BIORTHOGONAL WAVELET PACKETS [J].
Zhou, Jian-Feng ;
Liu, Yong .
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, :552-+
[44]   Regular orthonormal and biorthogonal wavelet filters [J].
Cooklev, T ;
Nishihara, A ;
Sablatash, M .
SIGNAL PROCESSING, 1997, 57 (02) :121-137
[45]   A biorthogonal wavelet for the continuous wavelet transform scale of speech recognition [J].
Karam, JR .
CISST '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, 2004, :387-390
[46]   WAVELET-GALERKIN METHODS - AN ADAPTED BIORTHOGONAL WAVELET BASIS [J].
DAHLKE, S ;
WEINREICH, I .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :237-262
[47]   Bilinear biorthogonal expansions and the Dunkl kernel on the real line [J].
Abreu, Luis Daniel ;
Ciaurri, Oscar ;
Varona, Juan Luis .
EXPOSITIONES MATHEMATICAE, 2012, 30 (01) :32-48
[48]   Conditions for convergence of biorthogonal expansions of functions on a closed interval [J].
Lomov, IS .
DIFFERENTIAL EQUATIONS, 2001, 37 (04) :593-597
[49]   EXPANSIONS IN BREIT-WIGNER AMPLITUDES AND BIORTHOGONAL FUNCTIONS [J].
KLINK, WH .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (05) :565-569
[50]   Conditions for Convergence of Biorthogonal Expansions of Functions on a Closed Interval [J].
I. S. Lomov .
Differential Equations, 2001, 37 :593-597