On Padé approximants of Markov-type meromorphic functions

被引:0
作者
A. A. Gonchar
S. P. Suetin
机构
[1] Russian Academy of Sciences,Steklov Institute of Mathematics
来源
Proceedings of the Steklov Institute of Mathematics | 2011年 / 272卷
关键词
STEKLOV Institute; Meromorphic Function; Orthogonal Polynomial; Normal Index; Remainder Function;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to the asymptotic properties of diagonal Padé approximants for Markov-type meromorphic functions. The main result is strong asymptotic formulas for the denominators of diagonal Padé approximants for Markov-type meromorphic functions f = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat \sigma $$\end{document} + r under additional constraints on the measure σ (r is a rational function). On the basis of these formulas, it is proved that, in a sufficiently small neighborhood of a pole of multiplicity m of such a meromorphic function f, all poles of the diagonal Padé approximants fn are simple and asymptotically located at the vertices of a regular m-gon.
引用
收藏
页码:58 / 95
页数:37
相关论文
共 19 条
[1]  
Chebyshev P. L.(1855)On Continued Fractions Uchen. Zap. Imp. Akad. Sci. III 636-664
[2]  
Markov A. A.(1895)Deux dé monstrations de la convergence de certaines fractions continues Acta Math. 19 93-104
[3]  
Gonchar A. A.(1975)On the Convergence of Padé Approximants for Some Classes of Meromorphic Functions Mat. Sb. 97 607-629
[4]  
Rakhmanov E. A.(1977)On Ratio Asymptotics for Orthogonal Polynomials Mat. Sb. 103 237-252
[5]  
Rakhmanov E. A.(1982)On Ratio Asymptotics for Orthogonal Polynomials. II Mat. Sb. 118 104-117
[6]  
Gonchar A. A.(1982)On the Uniform Convergence of Diagonal Padé Approximants Mat. Sb. 118 535-556
[7]  
Akhiezer N. I.(1960)On Orthogonal Polynomials on Several Intervals Dokl. Akad. Nauk SSSR 134 9-12
[8]  
Akhiezer N. I.(1961)To the Theory of Orthogonal Polynomials on Several Intervals Dokl. Akad. Nauk SSSR 138 743-746
[9]  
Tomchuk Yu. Ya.(1961)Continual Analogues of Orthogonal Polynomials on a System of Intervals Dokl. Akad. Nauk SSSR 141 263-266
[10]  
Akhiezer N. I.(1984)Asymptotics of Diagonal Hermite-Padé Polynomials J. Approx. Theory 42 299-386