D-optimal chemical balance weighing designs with autoregressive errors

被引:0
作者
Krystyna Katulska
Łukasz Smaga
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
来源
Metrika | 2013年 / 76卷
关键词
Autoregressive process; D-optimal chemical balance weighing design; Factorial design; Fischer’s inequality; Hadamard’s inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the estimation problem of individual weights of three objects. For the estimation we use the chemical balance weighing design and the criterion of D-optimality. We assume that the error terms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon_{i},\ i=1,2,\dots,n,}$$\end{document} are a first-order autoregressive process. This assumption implies that the covariance matrix of errors depends on the known parameter ρ. We present the chemical balance weighing design matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{\bf X}}$$\end{document} and we prove that this design is D-optimal in certain classes of designs for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\in[0,1)}$$\end{document} and it is also D-optimal in the class of designs with the design matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf X} \in M_{n\times 3}(\pm 1)}$$\end{document} for some ρ ≥ 0. We prove also the necessary and sufficient conditions under which the design is D-optimal in the class of designs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{n\times 3}(\pm 1)}$$\end{document} , if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\in[0,1/(n-2))}$$\end{document} . We present also the matrix of the D-optimal factorial design with 3 two-level factors.
引用
收藏
页码:393 / 407
页数:14
相关论文
共 15 条
[1]  
Cheng CS(1980)Optimality of some weighing and 2 Ann Stat 8 436-446
[2]  
Cohn JHE(1967) fractional factorial designs J Lond Math Soc 42 436-442
[3]  
Cohn JHE(1989)On determinants with elements ± 1 Bull Lond Math Soc 21 36-42
[4]  
Galil Z(1980)On determinants with elements ±1, II Ann Stat 8 1293-1306
[5]  
Kiefer J(1893)D-optimum weighing designs Bull Sci Math 2 240-246
[6]  
Hadamard J(1983)Résolution d’une question relative aux déterminants J Stat Plann Inference 8 231-240
[7]  
Jacroux M(2010)On the optimality of chemical balance weighing designs Colloquium Biometricum 40 155-164
[8]  
Wong CS(2005)On some construction of D-optimal chemical balance weighing designs Linear Algebra Appl 400 279-290
[9]  
Masaro JC(2005)On a conjecture in D-optimal designs with Metrika 61 261-275
[10]  
Katulska K(undefined) ≡ 0 (mod 4) undefined undefined undefined-undefined