Real-time EEG Feedback on Alpha Power Lateralization Leads to Behavioral Improvements in a Covert Attention Task

被引:0
作者
Christoph Schneider
Michael Pereira
Luca Tonin
José del R. Millán
机构
[1] École Polytechnique Fédérale de Lausanne (EPFL),Chair for Brain
[2] École Polytechnique Fédérale de Lausanne (EPFL),Machine Interface (CNBI)
来源
Brain Topography | 2020年 / 33卷
关键词
Covert visuospatial attention; Brain-computer interface; EEG; Closed-loop; Alpha band lateralization; Hemispatial neglect;
D O I
暂无
中图分类号
学科分类号
摘要
Visual attention can be spatially oriented, even in the absence of saccadic eye-movements, to facilitate the processing of incoming visual information. One behavioral proxy for this so-called covert visuospatial attention (CVSA) is the validity effect (VE): the reduction in reaction time (RT) to visual stimuli at attended locations and the increase in RT to stimuli at unattended locations. At the electrophysiological level, one correlate of CVSA is the lateralization in the occipital α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-band oscillations, resulting from α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-power increases ipsilateral and decreases contralateral to the attended hemifield. While this α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-band lateralization has been considerably studied using electroencephalography (EEG) or magnetoencephalography (MEG), little is known about whether it can be trained to improve CVSA behaviorally. In this cross-over sham-controlled study we used continuous real-time feedback of the occipital α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-lateralization to modulate behavioral and electrophysiological markers of covert attention. Fourteen subjects performed a cued CVSA task, involving fast responses to covertly attended stimuli. During real-time feedback runs, trials extended in time if subjects reached states of high α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-lateralization. Crucially, the ongoing α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-lateralization was fed back to the subject by changing the color of the attended stimulus. We hypothesized that this ability to self-monitor lapses in CVSA and thus being able to refocus attention accordingly would lead to improved CVSA performance during subsequent testing. We probed the effect of the intervention by evaluating the pre-post changes in the VE and the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-lateralization. Behaviorally, results showed a significant interaction between feedback (experimental–sham) and time (pre-post) for the validity effect, with an increase in performance only for the experimental condition. We did not find corresponding pre-post changes in the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-lateralization. Our findings suggest that EEG-based real-time feedback is a promising tool to enhance the level of covert visuospatial attention, especially with respect to behavioral changes. This opens up the exploration of applications of the proposed training method for the cognitive rehabilitation of attentional disorders.
引用
收藏
页码:48 / 59
页数:11
相关论文
共 195 条
[1]  
Andersson P(2012)Real-time decoding of the direction of covert visuospatial attention J Neural Eng 9 045004-139
[2]  
Ramsey NF(2007)Spatial attention changes excitability of human visual cortex to direct stimulation Curr Biol 17 134-159
[3]  
Raemaekers M(1992)A power primer Psychol Bull 112 155-297
[4]  
Viergever MA(2000)Voluntary orienting is dissociated from target detection in human posterior parietal cortex Nat Neurosci 3 292-336
[5]  
Pluim JPW(2003)Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems Brain Cogn 51 326-478
[6]  
Bestmann S(2015)Closed-loop training of attention with real-time brain imaging Nat Neurosci 18 470-222
[7]  
Ruff CC(1995)Neural mechanisms of selective visual attention Annu Rev Neurosci 18 193-192
[8]  
Blakemore C(1997)Retinotopic organization in human visual cortex and the spatial precision of functional MRI Cerebr Cortex 7 181-6490
[9]  
Driver J(2019)Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task Proc Natl Acad Sci 116 6482-13
[10]  
Thilo KV(2011)The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention Front Psychol 2 1-1106