Mean-field description of heavy-ion scattering at low energies and fusion

被引:0
作者
Dao T. Khoa
Le Hoang Chien
Do Cong Cuong
Nguyen Hoang Phuc
机构
[1] VINATOM,Institute for Nuclear Science and Technology
[2] University of Science,Department of Nuclear Physics and Nuclear Engineering, Faculty of Physics and Engineering Physics
[3] VNU-HCM,undefined
来源
Nuclear Science and Techniques | 2018年 / 29卷
关键词
Folding model; Elastic scattering; Fusion;
D O I
暂无
中图分类号
学科分类号
摘要
The nuclear mean-field potential built up during the 12C+12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} collisions at low energies relevant for the carbon- and oxygen-burning processes is constructed within the double-folding model (DFM) using the realistic ground-state densities of 12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}\hbox {C}$$\end{document} and 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O, and CDM3Yn density-dependent nucleon–nucleon (NN) interaction. The rearrangement term, indicated by the Hugenholtz–van Hove theorem for the single-particle energy in nuclear matter, is properly considered in the DFM calculation. To validate the use of the density-dependent NN interaction at low energies, an adiabatic approximation was suggested for the dinuclear overlap density. The reliability of the nucleus–nucleus potential predicted through this low-energy version of the DFM was tested in the optical model (OM) analysis of the elastic 12C+12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} scattering data at energies below 10 MeV/nucleon. These OM results provide a consistently good description of the elastic angular distributions and 90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} excitation function. The dinuclear mean-field potential predicted by the DFM is further used to determine the astrophysical S factor of the 12C+12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} fusions in the barrier penetration model. Without any adjustment of the potential strength, our results reproduce the non-resonant behavior of the S factor of the 12C+12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} fusions very well over a wide range of energies.
引用
收藏
相关论文
共 157 条
  • [1] Fowler WA(1975)Thermonuclear reaction rates, II Ann. Rev. Astron. Astrophys. 13 69-112
  • [2] Caughlan GR(1980)The Z. Phys. A 298 65-75
  • [3] Zimmerman BA(1980) reaction at subcoulomb energies (I) Phys. Rev. C 22 2462-2464
  • [4] Kettner KU(2006)Total reaction cross section for Phys. Rev. C 73 064601-332
  • [5] Lorenz-Wirzba H(2006) in the vicinity of the Coulomb barrier Nucl. Phys. A 779 318-690
  • [6] Rolfs C(2005)New Phys. Rev. C 72 025806-494
  • [7] Treu W(2007)-ray measurements for Phys. Rev. Lett. 98 122501-183
  • [8] Fröhlich H(2015) sub-Coulomb fusion: toward data unification Phys. Rev. Lett. 114 251102-396
  • [9] Galster W(2018)Absolute cross sections measurement for the Phys. Rev. C 97 012801(R)-359
  • [10] Aguilera EF(2018) system at astrophysically relevant energies Nature 557 687-769