The nuclear mean-field potential built up during the 12C+12C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} collisions at low energies relevant for the carbon- and oxygen-burning processes is constructed within the double-folding model (DFM) using the realistic ground-state densities of 12C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{12}\hbox {C}$$\end{document} and 16\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{16}$$\end{document}O, and CDM3Yn density-dependent nucleon–nucleon (NN) interaction. The rearrangement term, indicated by the Hugenholtz–van Hove theorem for the single-particle energy in nuclear matter, is properly considered in the DFM calculation. To validate the use of the density-dependent NN interaction at low energies, an adiabatic approximation was suggested for the dinuclear overlap density. The reliability of the nucleus–nucleus potential predicted through this low-energy version of the DFM was tested in the optical model (OM) analysis of the elastic 12C+12C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} scattering data at energies below 10 MeV/nucleon. These OM results provide a consistently good description of the elastic angular distributions and 90∘\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ$$\end{document} excitation function. The dinuclear mean-field potential predicted by the DFM is further used to determine the astrophysical S factor of the 12C+12C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} fusions in the barrier penetration model. Without any adjustment of the potential strength, our results reproduce the non-resonant behavior of the S factor of the 12C+12C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{12}\hbox {C}+{}^{12}\hbox {C}$$\end{document} and 16O+16O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{16}\hbox {O}+{}^{16}\hbox {O}$$\end{document} fusions very well over a wide range of energies.