Silicon slow light photonic crystals structures: Present achievements and future trends

被引:4
作者
Cassan E. [1 ]
Le Roux X. [1 ]
Caer C. [1 ]
Hao R. [1 ]
Bernier D. [1 ]
Marris-Morini D. [1 ]
Vivien L. [1 ]
机构
[1] Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS UMR 8622, 91405 Orsay Cedex
来源
Frontiers of Optoelectronics in China | 2011年 / 4卷 / 3期
关键词
integrated optical devices; photonic crystals; silicon photonics; slow light;
D O I
10.1007/s12200-011-0144-y
中图分类号
学科分类号
摘要
Slow light in planar photonic structures has attracted for some years an increasing interest due to amazing physical effects it allows or reinforces and to the degrees of freedom it raises for designing new optical functions. Controlling light group velocity is achieved through the use of periodical optical media obtained by nano-structuration of semiconductor wafers at the scale of light wavelength: the so-called photonic crystals. This article reviews present achievements realized in the field of slow light photonic bandgap structures, including the physical principles of slow light to the description of the most advanced integrated optical devices relying on it. Challenges and current hot topics related to slow light are discussed to highlight the balance between the advantages and drawbacks of using slow waves in integrated photonic structures. Then, future trends are described, which is focused on the use of slow wave slot waveguides for nonlinear optics and bio-photonic applications. © 2011 Higher Education Press and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:243 / 253
页数:10
相关论文
共 41 条
[1]  
Pavesi L., Guillot G., Optical Interconnects: The Silicon Approach, (2006)
[2]  
Soref R., Silicon photonics: a review of recent literature, Chemistry and Materials Science, 2, 1, pp. 1-6, (2010)
[3]  
Jones R., Liao L., Liu A.S., Salib M., Rubin D., Coehn O., Samara-Rubio D., Paniccia M., Optical characterization of 1-GHz silicon based optical modulator, Proceedings of SPIE, 5451, pp. 8-15, (2004)
[4]  
Liu A.S., Jones R., Liao L., Samara-Rubio D., Rubin D., Cohen O., Nicolaescu R., Paniccia M., A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor, Nature, 427, 6975, pp. 615-618, (2004)
[5]  
Marris-Morini D., Le Roux X., Vivien L., Cassan E., Pascal D., Halbwax M., Maine S., Laval S., Fedeli J.M., Damlencourt J.F., Optical modulation by carrier depletion in a silicon PIN diode, Optics Express, 14, 22, pp. 10838-10843, (2006)
[6]  
Marris-Morini D., Vivien L., Fedeli J.M., Cassan E., Lyan P., Laval S., Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure, Optics Express, 16, 1, pp. 334-339, (2008)
[7]  
Liao L., Liu A., Basak J., Nguyen H., Paniccia M., Rubin D., Chetrit Y., Cohen R., Izhaky N., 40 Gbit/s silicon optical modulator for highspeed applications, Electronics Letters, 43, 22, (2007)
[8]  
Rong H.S., Liu A.S., Jones R., Cohen O., Hak D., Nicolaescu R., Fang A., Paniccia M., An all-silicon Raman laser, Nature, 433, 7023, pp. 292-294, (2005)
[9]  
Rong H.S., Jones R., Liu A.S., Cohen O., Hak D., Fang A., Paniccia M., A continuous-wave Raman silicon laser, Nature, 433, 7027, pp. 725-728, (2005)
[10]  
Foster M.A., Turner A.C., Sharping J.E., Schmidt B.S., Lipson M., Gaeta A.L., Broad-band optical parametric gain on a silicon photonic chip, Nature, 441, 7096, pp. 960-963, (2006)