Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation

被引:2
作者
Chen, Hua [1 ]
Liao, Xin [1 ]
Zhang, Ming [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
35H10; 35J20; 35J61; SOBOLEV INEQUALITIES; MULTIPLE SOLUTIONS; EQUATIONS; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00526-024-02708-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
n this paper, we investigate the existence of weak solutions for a class of degenerate ellipticDirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e.{-(Delta(x)u+(alpha+1)2|x|(2 alpha)Delta(y)u)=uQ+2/Q-2+lambda u logu(2),u=0 on partial derivative Omega, (0.2) where (x, y) is an element of Omega subset of R-N=R(m)xR(n )with m >= 1, n >= 0, Omega boolean AND {x=0} not equal & empty;is a bounded domain, the parameter alpha >= 0 and Q = m+n(alpha+1) denotes the "homogeneous dimension" of R-N. When lambda=0, we know that from [23] the problem (0.2) has a Poho & zcaron;aev-type non-existence result. Then for lambda is an element of R\{0}, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions
引用
收藏
页数:36
相关论文
共 50 条
[41]   Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity [J].
Liu, Hongliang ;
Liu, Zhisu ;
Xiao, Qizhen .
APPLIED MATHEMATICS LETTERS, 2018, 79 :176-181
[43]   Continuum of solutions for an elliptic problem with critical growth in the gradient [J].
Arcoya, David ;
De Coster, Colette ;
Jeanjean, Louis ;
Tanaka, Kazunaga .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) :2298-2335
[44]   SOLVABILITY OF THE NONLINEAR DIRICHLET PROBLEM WITH INTEGRO-DIFFERENTIAL OPERATORS [J].
Bayraktar, Erhan ;
Song, Qingshuo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) :292-315
[45]   A critical Kirchhoff ff problem with a logarithmic type perturbation in high dimension [J].
Li, Qi ;
Han, Yuzhu ;
Guo, Bin .
COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03) :578-598
[46]   Estimates of singular numbers (s-numbers) for a class of degenerate elliptic operators [J].
Igisinov, S. Zh. ;
Zhumaliyeva, L. D. ;
Suleimbekova, A. O. ;
Bayandiyev, Ye. N. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 107 (03) :51-58
[47]   Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: A unitary approach [J].
Paronetto, Fabio .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (04) :669-691
[48]   An nonlinear elliptic problem involves two types of terms: degenerate coercivity and singular nonlinearity [J].
Khelifi, Hichem ;
Zouatini, Mohamed Amine .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
[49]   THE DIRICHLET PROBLEM FOR NONLOCAL ELLIPTIC OPERATORS WITH C0,α EXTERIOR DATA [J].
Audrito, Alessandro ;
Ros-Oton, Xavier .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (10) :4455-4470