Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation

被引:2
作者
Chen, Hua [1 ]
Liao, Xin [1 ]
Zhang, Ming [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
35H10; 35J20; 35J61; SOBOLEV INEQUALITIES; MULTIPLE SOLUTIONS; EQUATIONS; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00526-024-02708-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
n this paper, we investigate the existence of weak solutions for a class of degenerate ellipticDirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e.{-(Delta(x)u+(alpha+1)2|x|(2 alpha)Delta(y)u)=uQ+2/Q-2+lambda u logu(2),u=0 on partial derivative Omega, (0.2) where (x, y) is an element of Omega subset of R-N=R(m)xR(n )with m >= 1, n >= 0, Omega boolean AND {x=0} not equal & empty;is a bounded domain, the parameter alpha >= 0 and Q = m+n(alpha+1) denotes the "homogeneous dimension" of R-N. When lambda=0, we know that from [23] the problem (0.2) has a Poho & zcaron;aev-type non-existence result. Then for lambda is an element of R\{0}, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions
引用
收藏
页数:36
相关论文
共 50 条
[31]   Everywhere Cα-estimates for a class of nonlinear elliptic systems with critical growth [J].
Bulicek, Miroslav ;
Frehse, Jens ;
Steinhauer, Mark .
ADVANCES IN CALCULUS OF VARIATIONS, 2014, 7 (02) :139-204
[32]   Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions [J].
Andronicou, Savvas ;
Milakis, Emmanouil .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) :2861-2901
[33]   A new perturbation to a critical elliptic problem with a variable exponent [J].
Liu, Zhongyuan ;
Luo, Peng .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (05) :1021-1040
[34]   HARNACK INEQUALITY FOR STRONGLY DEGENERATE ELLIPTIC OPERATORS WITH NATURAL GROWTH [J].
Di Fazio, Giuseppe ;
Fanciullo, Maria Stella ;
Zamboni, Pietro .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, :65-75
[35]   On a class of nonlinear degenerate elliptic equations in weighted Sobolev spaces [J].
El Ouaarabi, Mohamed ;
Allalou, Chakir ;
Melliani, Said .
GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) :81-94
[36]   Monotone numerical schemes for a Dirichlet problem for elliptic operators in divergence form [J].
Limic, Nedzad ;
Rogina, Mladen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (09) :1129-1155
[37]   A class of nonlinear degenerate elliptic equations related to the Gauss measure [J].
di Blasio, Giuseppina ;
Feo, Filomena .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) :763-779
[38]   The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds [J].
Guan, Bo .
ADVANCES IN MATHEMATICS, 2023, 415
[39]   GLOBAL SOLVABILITY OF DIRICHLET PROBLEM FOR FULLY NONLINEAR ELLIPTIC SYSTEMS [J].
Fattorusso, Luisa ;
Tarsia, Antonio .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) :1043-1065
[40]   The thin obstacle problem for some variable coefficient degenerate elliptic operators [J].
Banerjee, Agnid ;
Buseghin, Federico ;
Garofalo, Nicola .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 223