Dirichlet problem for a class of nonlinear degenerate elliptic operators with critical growth and logarithmic perturbation

被引:2
作者
Chen, Hua [1 ]
Liao, Xin [1 ]
Zhang, Ming [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
35H10; 35J20; 35J61; SOBOLEV INEQUALITIES; MULTIPLE SOLUTIONS; EQUATIONS; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00526-024-02708-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
n this paper, we investigate the existence of weak solutions for a class of degenerate ellipticDirichlet problems with critical nonlinearity and a logarithmic perturbation, i.e.{-(Delta(x)u+(alpha+1)2|x|(2 alpha)Delta(y)u)=uQ+2/Q-2+lambda u logu(2),u=0 on partial derivative Omega, (0.2) where (x, y) is an element of Omega subset of R-N=R(m)xR(n )with m >= 1, n >= 0, Omega boolean AND {x=0} not equal & empty;is a bounded domain, the parameter alpha >= 0 and Q = m+n(alpha+1) denotes the "homogeneous dimension" of R-N. When lambda=0, we know that from [23] the problem (0.2) has a Poho & zcaron;aev-type non-existence result. Then for lambda is an element of R\{0}, we establish the existences of non-negative ground state weak solutions and non-trivial weak solutions subject to certain conditions
引用
收藏
页数:36
相关论文
共 50 条
[21]   Nonlinear degenerate elliptic partial differential equations with critical growth conditions on the gradient [J].
Cho, K ;
Choe, HJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3789-3796
[22]   Three Bounded Solutions for a Degenerate Nonlinear Dirichlet Problem [J].
Tornatore, Elisabetta .
AXIOMS, 2025, 14 (04)
[23]   Estimates of Dirichlet eigenvalues for a class of sub-elliptic operators [J].
Chen, Hua ;
Chen, Hong-Ge .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (06) :808-847
[24]   Existence and regularity of solutions to semi-linear Dirichlet problem of infinitely degenerate elliptic operators with singular potential term [J].
Chen Hua ;
Luo Peng ;
Tian ShuYing .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (04) :687-706
[25]   THE DIRICHLET PROBLEM FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT [J].
Baalal, Azeddine ;
Berghout, Mohamed .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01) :295-313
[26]   Liouville theorems for a family of very degenerate elliptic nonlinear operators [J].
Birindelli, Isabeau ;
Galise, Giulio ;
Leoni, Fabiana .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 161 :198-211
[27]   On a class of quasilinear elliptic systems with critical growth [J].
Liu, Zhaoxia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (02) :558-570
[28]   WEAK SOLUTION FOR NONLINEAR DEGENERATE ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION IN WEIGHTED SOBOLEV SPACES [J].
Sabri, Abdelali ;
Jamea, Ahmed ;
Alaoui, Hamad Talibi ;
Jadida, El .
MATHEMATICA BOHEMICA, 2022, 147 (01) :113-129
[29]   Multiple solutions for a nonlinear Dirichlet problem driven by degenerate p-Laplacian [J].
Bonanno, G. ;
Sciammetta, A. ;
Tornatore, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
[30]   On a class of nonlinear elliptic equations with fast increasing weight and critical growth [J].
Furtado, Marcelo F. ;
Myiagaki, Olimpio H. ;
da Silva, Joao Pablo P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1035-1055