On total restrained domination in graphs

被引:0
作者
De-Xiang Ma
Xue-Gang Chen
Liang Sun
机构
[1] Shandong University of Science and Technology,The College of Information Science and Engineering
[2] Shandong University of Science and Technology,The College of Information Science and Engineering
[3] Beijing Institute of Technology,Dept. of Applied Mathematics
来源
Czechoslovak Mathematical Journal | 2005年 / 55卷
关键词
total restrained domination number; Nordhaus-Gaddum-type results; NP-complete; level decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we initiate the study of total restrained domination in graphs. Let G = (V,E) be a graph. A total restrained dominating set is a set S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \subseteq $$ \end{document}V where every vertex in V - S is adjacent to a vertex in S as well as to another vertex in V - S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γrt(G), is the smallest cardinality of a total restrained dominating set of G. First, some exact values and sharp bounds for γrt(G) are given in Section 2. Then the Nordhaus-Gaddum-type results for total restrained domination number are established in Section 3. Finally, we show that the decision problem for γrt(G) is NP-complete even for bipartite and chordal graphs in Section 4.
引用
收藏
页码:165 / 173
页数:8
相关论文
共 7 条
[1]  
Domke G. S.(1999)Restrained domination in graphs Discrete Math. 203 61-69
[2]  
Hattingh J. H.(1999)Graphs with large restrained domination number Discrete Math. 197/198 415-429
[3]  
Henning M. A.(1956)On complementary graphs Amer. Math. Monthly 63 175-177
[4]  
Nordhaus E. A.(1972)Relations du type Nordhaus-Gaddum pour le nombre d’absorption d’un granhe simple C. R. Acad. Sci. Ser. A 274 728-730
[5]  
Gaddum J. W.(undefined)undefined undefined undefined undefined-undefined
[6]  
Jaeger F.(undefined)undefined undefined undefined undefined-undefined
[7]  
Payan C.(undefined)undefined undefined undefined undefined-undefined