Duality of κ-normed topological vector spaces and their applications

被引:0
|
作者
Ludkovsky S.V. [1 ]
机构
[1] Department of Applied Mathematics, Moscow State Technical University MIREA, Moscow
关键词
Normed Space; Quotient Space; Topological Vector Space; Quotient Mapping; Dual Pair;
D O I
10.1007/s10958-009-9318-1
中图分类号
学科分类号
摘要
In this paper, the duality of κ-normed topological vector spaces X is defined and investigated, where X is over the field K = R, or K = C, or a non-Archimedean field. For such spaces, an analog of the Mackey-Arens theorem is proved. The conditional κ-normability of spaces L(X) of linear topological homeomorphisms of a locally convex κ-normed space X is studied, where the image of elements under the corresponding operations is in L(X). Cases where the κ-normability of a topological vector space implies its local convexity are investigated. Applications of κ-normed spaces for resolutions of differential equations and for approximations of functions in mathematical economics are given. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:367 / 385
页数:18
相关论文
共 50 条
  • [41] On Bisectors in Minkowski Normed Spaces
    Á. G. Horváth
    Acta Mathematica Hungarica, 2000, 89 : 233 - 246
  • [42] Saturating constructions for normed spaces
    S. J. Szarek
    N. Tomczak-Jaegermann
    Geometric & Functional Analysis GAFA, 2004, 14 : 1352 - 1375
  • [43] On bisectors in Minkowski normed spaces
    Horváth, AG
    ACTA MATHEMATICA HUNGARICA, 2000, 89 (03) : 233 - 246
  • [44] OPTIMAL BUNDLES IN NORMED SPACES
    Cuenya, H. H.
    Levis, F. E.
    Rodriguez, C. N.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02): : 87 - 96
  • [45] On an Orthogonality Equation in Normed Spaces
    Wojcik, P.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (03) : 224 - 227
  • [46] Topological Properties of Real Normed Space
    Nakasho, Kazuhisa
    Futa, Yuichi
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2014, 22 (03): : 209 - 223
  • [47] Zone diagrams in Euclidean spaces and in other normed spaces
    Kawamura, Akitoshi
    Matousek, Jiri
    Tokuyama, Takeshi
    MATHEMATISCHE ANNALEN, 2012, 354 (04) : 1201 - 1221
  • [48] Zone diagrams in Euclidean spaces and in other normed spaces
    Akitoshi Kawamura
    Jiří Matoušek
    Takeshi Tokuyama
    Mathematische Annalen, 2012, 354 : 1201 - 1221
  • [49] ON GENERALIZED VECTOR VARIATIONAL-LIKE INEQUALITIES WITHOUT GENERALIZED MONOTONICITY IN TOPOLOGICAL VECTOR SPACES
    Chou, Chun-Yen
    Naraghirad, Eskandar
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (05) : 907 - 919
  • [50] Leray-Schauder alternatives for approximable maps in topological vector spaces
    Kim, IS
    Kim, K
    Park, S
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (3-4) : 385 - 391