Duality of κ-normed topological vector spaces and their applications

被引:0
作者
Ludkovsky S.V. [1 ]
机构
[1] Department of Applied Mathematics, Moscow State Technical University MIREA, Moscow
关键词
Normed Space; Quotient Space; Topological Vector Space; Quotient Mapping; Dual Pair;
D O I
10.1007/s10958-009-9318-1
中图分类号
学科分类号
摘要
In this paper, the duality of κ-normed topological vector spaces X is defined and investigated, where X is over the field K = R, or K = C, or a non-Archimedean field. For such spaces, an analog of the Mackey-Arens theorem is proved. The conditional κ-normability of spaces L(X) of linear topological homeomorphisms of a locally convex κ-normed space X is studied, where the image of elements under the corresponding operations is in L(X). Cases where the κ-normability of a topological vector space implies its local convexity are investigated. Applications of κ-normed spaces for resolutions of differential equations and for approximations of functions in mathematical economics are given. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:367 / 385
页数:18
相关论文
共 13 条
[1]  
Attouch H., Lucchetti R., Wets R.J.-B., The topology of the ?-Hausdorff distance, Ann. Mat. Pura Appl. ser IV, 160, pp. 303-320, (1991)
[2]  
Bosi And G., Isler R., Un'interpretazione topologica degli interval orders, Atti Del XVI Convegno A.M.A.S.E.S., pp. 145-154, (1992)
[3]  
Bosi And G., Isler R., Una nota sulle rappresentazioni semicontinue degli interval orders, Atti Del XVIII Convegno A.M.A.S.E.S., (1994)
[4]  
Bosi G., Isler R., Representing preferences with nontransitive indifference by a single real-valued function, J. Math. Economics, 24, pp. 621-631, (1995)
[5]  
Engelking R., General Topology, (1986)
[6]  
Isler R., Su un assioma interessante la teoria degli interval orders, Math. Pannon., 1, pp. 117-123, (1990)
[7]  
Ludkovsky S.V., Topological groups and their κ-metrics, Usp. Mat. Nauk, 48, pp. 173-174, (1993)
[8]  
Ludkovsky S.V., κ-Normed topological vector spaces, Sib. Mat. Zh., 41, pp. 167-184, (2000)
[9]  
Narici L., Beckenstein E., Topological Vector Spaces, (1985)
[10]  
Van Rooij A.C.M., Non-Archimedean Functional Analysis, (1978)