Simultaneous reduction to block triangular form and theorems on pairs of complex idempotents

被引:0
作者
Kh. D. Ikramov
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Computational Mathematics and Mathematical Physics | 2011年 / 51卷
关键词
idempotents; projectors; simultaneous reduction to block triangular form; eigenvalues; nonsingular matrices;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that the properties of idempotents found in recent journal publications can be justified in an easier way if a classical theorem concerning the simultaneous reduction of a pair of complex idempotents to block triangular form is used.
引用
收藏
页码:915 / 918
页数:3
相关论文
共 10 条
[1]  
Ikramov Kh. D.(1998)On Simultaneous Reduction of a Pair of Oblique Projectors to Block Triangular Form Zh. Vychisl. Mat. Mat. Fiz. 38 181-182
[2]  
Gohberg I.(1992)Extension Theorems for Invertibility Symbols in Banach Algebras Integral Equations Operator Theory 15 991-1010
[3]  
Krupnik N.(1993)Extension Theorems for Fredholm and Invertibility Symbols Integral Equations Operator Theory 16 514-529
[4]  
Gohberg I.(2010)A Gentle Guide to the Basics of Two Projections Theory Linear Algebra Appl. 432 1412-1459
[5]  
Krupnik N.(1999)Nonsingularity of the Difference of Two Oblique Projectors SIAM J. Matrix Anal. Appl. 21 390-395
[6]  
Böttcher A.(2010)Nonsingularity of the Difference and the Sum of Two Idempotent Matrices Linear Algebra Appl. 433 476-482
[7]  
Spitkovsky I. M.(undefined)undefined undefined undefined undefined-undefined
[8]  
Gross J.(undefined)undefined undefined undefined undefined-undefined
[9]  
Trenkler G.(undefined)undefined undefined undefined undefined-undefined
[10]  
Zuo K.(undefined)undefined undefined undefined undefined-undefined