Maximal d-subgroups and ultrafilters

被引:5
作者
Bhattacharjee P. [1 ]
McGovern W.W. [2 ]
机构
[1] School of Science, Penn State Behrend, Erie, 16563, PA
[2] H. L. Wilkes Honors College, Florida Atlantic University, Jupiter, 33458, FL
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2018年 / 67卷 / 3期
关键词
Archimedean lattice-ordered group; Ultrafilters d-subgroups; Yosida representation;
D O I
10.1007/s12215-017-0323-9
中图分类号
学科分类号
摘要
We study the space Maxd(G) of maximal d-subgroups of a lattice-ordered group, paying specific attention to archimedean ℓ-groups with weak order unit. For such an object (G, u), Maxd(G) lays at a level in between the space of minimal prime subgroups and the Yosida space of (G, u). Theorem 5.10 gives the appropriate generalization of a quasi F-space to W-objects which avoids a discussion of o-complete ℓ-groups. © 2017, Springer-Verlag Italia S.r.l.
引用
收藏
页码:421 / 440
页数:19
相关论文
共 25 条
  • [1] Ball R.N., Hager A.W., Archimedean kernel distinguishing extensions of archimedean l -groups with weak order unit, Indian J. Math., 29, pp. 351-368, (1987)
  • [2] Banaschewski B., On Wallman’s method of compactification, Math. Nachr., 27, pp. 105-114, (1963)
  • [3] Bhattacharjee P., Drees K., Filters of Coz (X), Categ. Gen. Algebr. Struct. Appl., 7, pp. 107-123, (2017)
  • [4] Bhattacharjee P., Quaest. Math., (2017)
  • [5] Bigard A., Keimel K., Wolfenstein S., Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, 608, (1977)
  • [6] Conrad P., The essential closure of an archimedean lattice-ordered group, Duke Math. J., 38, pp. 151-160, (1971)
  • [7] Darnel M.R., Theory of Lattice-Ordered Groups. Monographs and Textbooks in Pure and Applied Mathematics 187, (1995)
  • [8] Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathametics, 43, (1976)
  • [9] Hager A.W., Kimber C.M., McGovern W.W., Least Integer Closed Groups, Ordered Algebraic Structures, pp. 245-260, (2002)
  • [10] Hager A.W., Kimber C.M., McGovern W.W., Weakly least integer closed groups, Rendiconti del Circolo Matematico di Palermo, 52, 3, pp. 453-480, (2003)