Steady Flows of Viscoelastic Fluids in Domains with Outlets to Infinity

被引:0
|
作者
K. Pileckas
A. Sequeira
J. H. Videman
机构
[1] Institute of Mathematics and Informatics,
[2] Akademijos 4,undefined
[3] LT—2600 Vilnius,undefined
[4] Lithuania,undefined
[5] and Vilnius University,undefined
[6] Department of Mathematics,undefined
[7] Naugarduko 24,undefined
[8] LT—2006 Vilnius,undefined
[9] Lithuania ,undefined
[10] Centro de Matemática Aplicada,undefined
[11] Departamento de Matemática,undefined
[12] Instituto Superior Técnico,undefined
[13] Av. Rovisco Pais,undefined
[14] 1049—001 Lisboa,undefined
[15] Portugal ,undefined
来源
Journal of Mathematical Fluid Mechanics | 2000年 / 2卷
关键词
Keywords. Viscoelastic fluids, weighted function spaces, outlets to infinity, asymptotic behaviour, secondary flows.;
D O I
暂无
中图分类号
学科分类号
摘要
The equations governing the motion of incompressible viscoelastic fluids of Rivlin—Ericksen and Oldroyd type are investigated in domains with cylindrical and paraboloidal outlets to infinity. For sufficiently small fluxes, prescribed in each outlet, existence and uniqueness of solutions are proven in weighted Hölder spaces. In domains with paraboloidal outlets the solution is obtained as a perturbation of the corresponding Navier—Stokes solution and in domains with cylindrical outlets as a perturbation of a flux carrier, constructed by joining together the exact solutions found in each outlet. These exact solutions are shown to be either rectilinear flows of Poiseuille type or flows composed of a rectilinear and of a transverse secondary component.
引用
收藏
页码:185 / 218
页数:33
相关论文
共 50 条