N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} theories of class Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{S}}_k $$\end{document}

被引:0
作者
Davide Gaiotto
Shlomo S. Razamat
机构
[1] Perimeter Institute for Theoretical Physics,
[2] NHETC,undefined
[3] Department of Physics,undefined
关键词
Supersymmetric gauge theory; Supersymmetry and Duality; Duality in Gauge Field Theories;
D O I
10.1007/JHEP07(2015)073
中图分类号
学科分类号
摘要
We construct classes of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} superconformal theories elements of which are labeled by punctured Riemann surfaces. Degenerations of the surfaces correspond, in some cases, to weak coupling limits. Different classes are labeled by two integers (N, k). The k = 1 case coincides with AN − 1N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories of class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} and simple examples of theories with k > 1 are ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_k $$\end{document} orbifolds of some of the AN − 1 class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} theories. For the space of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} theories to be complete in an appropriate sense we find it necessary to conjecture existence of new N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} strongly coupled SCFTs. These SCFTs when coupled to additional matter can be related by dualities to gauge theories. We discuss in detail the A1 case with k = 2 using the supersymmetric index as our analysis tool. The index of theories in classes with k > 1 can be constructed using eigenfunctions of elliptic quantum mechanical models generalizing the Ruijsenaars-Schneider integrable model. When the elliptic curve of the model degenerates these eigenfunctions become polynomials with coefficients being algebraic expressions in fugacities, generalizing the Macdonald polynomials with rational coefficients appearing when k = 1.
引用
收藏
相关论文
共 142 条
[1]  
Franco S(2006)Brane dimers and quiver gauge theories JHEP 01 096-undefined
[2]  
Hanany A(2006)Gauge theories from toric geometry and brane tilings JHEP 01 128-undefined
[3]  
Kennaway KD(2008)Dimer models from mirror symmetry and quivering amoebae Adv. Theor. Math. Phys. 12 489-undefined
[4]  
Vegh D(2012)Bipartite Field Theories: from D-brane Probes to Scattering Amplitudes JHEP 11 141-undefined
[5]  
Wecht B(2012)Network and Seiberg Duality JHEP 09 036-undefined
[6]  
Franco S(2013)String Theory Origin of Bipartite SCFTs JHEP 05 148-undefined
[7]  
Feng B(2012)N=2 dualities JHEP 08 034-undefined
[8]  
He Y-H(2010)S-duality and 2d Topological QFT JHEP 03 032-undefined
[9]  
Kennaway KD(2010)The Superconformal Index of the E JHEP 08 107-undefined
[10]  
Vafa C(2013) SCFT JHEP 01 022-undefined