List 2-distance (Δ + 2)-coloring of planar graphs with girth 6 and Δ ≥ 24

被引:0
作者
Oleg V. Borodin
Anna O. Ivanova
机构
[1] Institute of Mathematics,
[2] Institute of Mathematics at Yakutsk State University,undefined
来源
Siberian Mathematical Journal | 2009年 / 50卷
关键词
planar graph; 2-distance coloring; list coloring;
D O I
暂无
中图分类号
学科分类号
摘要
It was proved in [1] that every planar graph with girth g ≥ 6 and maximum degree Δ ≥ 8821 is 2-distance (Δ + 2)-colorable. We prove that every planar graph with g ≥ 6 and Δ ≥ 24 is list 2-distance (Δ + 2)-colorable.
引用
收藏
页码:958 / 964
页数:6
相关论文
共 39 条
  • [1] Dvorak Z.(2008)Coloring squares of planar graphs with girth six European J. Combin. 29 838-849
  • [2] Kral’ D.(2001)The minimum degree and chromatic number of the square of a planar graph Diskret. Anal. Issled. Oper. 8 9-33
  • [3] Nejedly P.(2006)( Mat. Zametki YaGU 13 3-9
  • [4] Skrekovski R.(2006))-coloring of sparse planar graphs Sibirsk. Elektron. Mat. Izv. 3 355-361
  • [5] Borodin O. V.(2003)List ( SIAM J. Discrete Math. 16 651-662
  • [6] Broersma H. J.(2001))-coloring of sparse planar graphs Diskret. Anal. Issled. Oper. 8 15-39
  • [7] Glebov A. N.(2005)Coloring powers of planar graphs J. Combin. Theory Ser. B 94 189-213
  • [8] van den Heuvel J.(2004)The structure of plane triangulations in terms of stars and bunches Sibirsk. Elektron. Mat. Izv. 1 76-90
  • [9] Borodin O. V.(2004)A bound on the chromatic number of the square of a planar graph Sibirsk. Elektron. Mat. Izv. 1 129-141
  • [10] Ivanova A. O.(2007)2-distance coloring of sparse planar graphs Diskret. Anal. Issled. Oper. 14 13-30