Supercoset CFT’s for String Theories on Non-compact Special Holonomy Manifolds

被引:0
|
作者
Tohru Eguchi
Yuji Sugawara
Satoshi Yamaguchi
机构
[1] University of Tokyo,Department of Physics, Faculty of Science
来源
Annales Henri Poincaré | 2003年 / 4卷
关键词
Manifold; Conical Singularity; Liouville Theory; Superconformal Symmetry; String Vacuum;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that an arbitrary (m − 1)-dimensional Einstein space Xm−1 possesses a Ricci flat metric on its m-dimensional cone C(Xm−1) of the form (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ds^{2} = dr^{2} + r^{2}ds^{2}_{X_{m-1}}$$\end{document}, where r is the radial coordinate, and the special holonomies on C(Xm − 1) originate from the “weak special holonomies” on Xm − 1. To be more precise, the SU(n), Sp(n), G2 and Spin(7) holonomies on the cone C(Xm − 1) are in one to one correspondence with the Sasaki-Einstein (m = 2n) , tri-Sasakian (m = 4n) , nearly Kähler (m = 7) and weak G2 (m = 8) structures on Xm − 1, respectively. This fact is very useful to systematically construct special holonomy manifolds with conical singularities, because the Einstein homogeneous spaces Xm − 1 = G/H endowed with these geometrical structures are well known from the old days of Kaluza-Klein supergravity (SUGRA).
引用
收藏
页码:93 / 95
页数:2
相关论文
共 50 条
  • [21] Complex powers and non-compact manifolds
    Ammann, B
    Lauter, R
    Nistor, V
    Vasy, A
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) : 671 - 705
  • [22] Optimal transportation on non-compact manifolds
    Fathi, Albert
    Figalli, Alessio
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) : 1 - 59
  • [23] Superconformal field theories for compact Manifolds with Spin(7) holonomy
    Blumenhagen, R
    Braun, V
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (12):
  • [24] REGULAR RIEMANNIAN S-MANIFOLDS OF NON-COMPACT TYPE
    SANCHEZ, CU
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (01) : 110 - 112
  • [25] Branes and fluxes in special holonomy manifolds and cascading field theories
    Akikazu Hashimoto
    Shinji Hirano
    Peter Ouyang
    Journal of High Energy Physics, 2011
  • [26] Branes and fluxes in special holonomy manifolds and cascading field theories
    Hashimoto, Akikazu
    Hirano, Shinji
    Ouyang, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06):
  • [27] Euclidean SYM theories by time reduction and special holonomy manifolds
    Blau, M
    Thompson, G
    PHYSICS LETTERS B, 1997, 415 (03) : 242 - 252
  • [28] CLOSED GEODESICS ON NON-COMPACT RIEMANNIAN MANIFOLDS
    THORBERGSSON, G
    MATHEMATISCHE ZEITSCHRIFT, 1978, 159 (03) : 249 - 258
  • [29] The spectrum of simplicial volume of non-compact manifolds
    Nicolaus Heuer
    Clara Löh
    Geometriae Dedicata, 2021, 215 : 243 - 253
  • [30] Geodesic nets on non-compact Riemannian manifolds
    Chambers, Gregory R.
    Liokumovich, Yevgeny
    Nabutovsky, Alexander
    Rotman, Regina
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (799): : 287 - 303