Supercoset CFT’s for String Theories on Non-compact Special Holonomy Manifolds

被引:0
|
作者
Tohru Eguchi
Yuji Sugawara
Satoshi Yamaguchi
机构
[1] University of Tokyo,Department of Physics, Faculty of Science
来源
Annales Henri Poincaré | 2003年 / 4卷
关键词
Manifold; Conical Singularity; Liouville Theory; Superconformal Symmetry; String Vacuum;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that an arbitrary (m − 1)-dimensional Einstein space Xm−1 possesses a Ricci flat metric on its m-dimensional cone C(Xm−1) of the form (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ds^{2} = dr^{2} + r^{2}ds^{2}_{X_{m-1}}$$\end{document}, where r is the radial coordinate, and the special holonomies on C(Xm − 1) originate from the “weak special holonomies” on Xm − 1. To be more precise, the SU(n), Sp(n), G2 and Spin(7) holonomies on the cone C(Xm − 1) are in one to one correspondence with the Sasaki-Einstein (m = 2n) , tri-Sasakian (m = 4n) , nearly Kähler (m = 7) and weak G2 (m = 8) structures on Xm − 1, respectively. This fact is very useful to systematically construct special holonomy manifolds with conical singularities, because the Einstein homogeneous spaces Xm − 1 = G/H endowed with these geometrical structures are well known from the old days of Kaluza-Klein supergravity (SUGRA).
引用
收藏
页码:93 / 95
页数:2
相关论文
共 50 条
  • [1] Supercoset CFT's for string theories on non-compact special holonomy manifolds
    Eguchi, T
    Sugawara, Y
    Yamaguchi, S
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 1): : S93 - S95
  • [2] Supercoset CFTs for string theories on non-compact special holonomy manifolds
    Eguchi, T
    Sugawara, Y
    Yamaguchi, S
    NUCLEAR PHYSICS B, 2003, 657 (1-3) : 3 - 52
  • [3] CFT description of string theory compactified on non-compact manifolds with G2 holonomy
    Eguchi, T
    Sugawara, Y
    PHYSICS LETTERS B, 2001, 519 (1-2) : 149 - 158
  • [4] Non-compact string backgrounds and non-rational CFT
    Schomerus, Volker
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 431 (02): : 39 - 86
  • [5] Non-compact quadratic s-manifolds
    Tsagas G.F.
    Xenos P.J.
    Journal of Geometry, 1999, 65 (1-2) : 200 - 207
  • [6] EMBEDDINGS OF NON-COMPACT MANIFOLDS
    MAXWELL, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A453 - A453
  • [7] Cascade of special holonomy manifolds and heterotic string theory
    Sugiyama, K
    Yamaguchi, S
    NUCLEAR PHYSICS B, 2002, 622 (1-2) : 3 - 45
  • [8] Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds
    Benjamin Assel
    Dario Martelli
    Sameer Murthy
    Daisuke Yokoyama
    Journal of High Energy Physics, 2017
  • [9] Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds
    Assel, Benjamin
    Martelli, Dario
    Murthy, Sameer
    Yokoyama, Daisuke
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03):
  • [10] ELLIPTICAL OPERATORS ON NON-COMPACT MANIFOLDS
    PAQUET, L
    JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 50 (03) : 267 - 284