Random Walk on the Range of Random Walk

被引:0
作者
David A. Croydon
机构
[1] University of Warwick,Department of Statistics
来源
Journal of Statistical Physics | 2009年 / 136卷
关键词
Random walk; Scaling limit; Range of random walk; Random environment;
D O I
暂无
中图分类号
学科分类号
摘要
We study the random walk X on the range of a simple random walk on ℤd in dimensions d≥4. When d≥5 we establish quenched and annealed scaling limits for the process X, which show that the intersections of the original simple random walk path are essentially unimportant. For d=4 our results are less precise, but we are able to show that any scaling limit for X will require logarithmic corrections to the polynomial scaling factors seen in higher dimensions. Furthermore, we demonstrate that when d=4 similar logarithmic corrections are necessary in describing the asymptotic behavior of the return probability of X to the origin.
引用
收藏
页码:349 / 372
页数:23
相关论文
共 41 条
[1]  
Banavar J.R.(1983)Resistance of random walks Phys. Rev. Lett. 51 1115-1118
[2]  
Brooks Harris A.(2005)Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs Commun. Pure Appl. Math. 58 1642-1677
[3]  
Koplik J.(2003)The speed of biased random walk on percolation clusters Probab. Theory Relat. Fields 126 221-242
[4]  
Barlow M.T.(2007)Functional CLT for random walk among bounded random conductances Electron. J. Probab. 12 1323-1348
[5]  
Coulhon T.(2003)Cut points and diffusive random walks in random environment Ann. Inst. H. Poincaré Probab. Stat. 39 527-555
[6]  
Kumagai T.(1962)First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path Trans. Am. Math. Soc. 103 434-450
[7]  
Berger N.(2009)Hausdorff measure of arcs and Brownian motion on Brownian spatial trees Ann. Probab. 37 946-978
[8]  
Gantert N.(1989)An invariance principle for reversible Markov processes. Applications to random motions in random environments J. Stat. Phys. 55 787-855
[9]  
Peres Y.(1986)Polymer chains in four dimensions Nucl. Phys. B 275 319-355
[10]  
Biskup M.(1960)Some intersection properties of random walk paths Acta Math. Acad. Sci. Hung. 11 231-248