About Dirichlet boundary value problem for the heat equation in the infinite angular domain

被引:0
作者
Muvasharkhan he Jenaliyev
Meiramkul Amangaliyeva
Minzilya Kosmakova
Murat Ramazanov
机构
[1] Institute of Mathematics and Mathematical Modeling,
[2] Al-Farabi Kazakh National University,undefined
[3] E.A. Buketov Karaganda State University,undefined
来源
Boundary Value Problems | / 2014卷
关键词
unique classes; heat conductivity; angular domain; boundary value problem; non-trivial solution; Volterra integral equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper it is established that in an infinite angular domain for Dirichlet problem of the heat conduction equation the unique (up to a constant factor) non-trivial solution exists, which does not belong to the class of summable functions with the found weight. It is shown that for the adjoint boundary value problem the unique (up to a constant factor) non-trivial solution exists, which belongs to the class of essentially bounded functions with the weight found in the work. It is proved that the operator of a boundary value problem of heat conductivity in an infinite angular domain in a class of growing functions is Noetherian with an index which is equal to minus one.
引用
收藏
相关论文
共 29 条
[1]  
Kim EI(1957)Solution of the certain class of singular integral equations with the line integrals Dokl. Akad. Nauk SSSR 113 24-27
[2]  
Kozhanov AI(2004)On a nonlinear loaded parabolic equation and the related with it inverse problem Math. Notes 76 840-853
[3]  
Holmgren E(1924)Sur les solutions quasi analytiques de l’equation de la chaleur Ark. Mat. Astron. Fys 18 64-95
[4]  
Tikhonov AN(1935)Théorèmes d’unicité pour l’équation de la chaleur Sb. Math 42 199-216
[5]  
Täcklind S(1936)Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique (in French) Nova acta Reg. Soc. Sci. Upsaliensis. Ser. IV vol. 10 1-57
[6]  
Ladyzhenskaya OA(1950)On uniqueness of the Cauchy problem solution for a linear parabolic equation Sb. Math 27 175-184
[7]  
Oleinik OA(1974)On uniqueness of the Cauchy problem solution for general parabolic systems in the classes of increasing functions Russ. Math. Surv 29 229-230
[8]  
Oleinik OA(1983)On examples of nonuniqueness of the boundary value problem solution for a parabolic equation in an unbounded domain Russ. Math. Surv 38 183-184
[9]  
Oleinik OA(1978)The method of introducing a parameter for study of evolutionary equations Russ. Math. Surv 33 7-76
[10]  
Radkevich EV(1984)On uniqueness classes of solutions of the boundary value problems for the second order parabolic equations in an unbounded domain Russ. Math. Surv 39 193-194