On multifractal formalism for self-similar measures with overlaps

被引:0
作者
Julien Barral
De-Jun Feng
机构
[1] Université Sorbonne Paris Nord,Laboratoire de Géométrie, Analyse et Applications
[2] CNRS,Department of Mathematics
[3] UMR 7539,undefined
[4] The Chinese University of Hong Kong,undefined
来源
Mathematische Zeitschrift | 2021年 / 298卷
关键词
Multifractal formalism; Self-similar measures; Hausdorff dimension; Asymptotically weak separation condition; 28A80; 37C45;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be a self-similar measure generated by an IFS Φ={ϕi}i=1ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi =\{\phi _i\}_{i=1}^\ell $$\end{document} of similarities on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^d$$\end{document} (d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}). When Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} is dimensional regular (see Definition 1.1), we give an explicit formula for the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spectrum τμ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mu (q)$$\end{document} of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} over [0, 1], and show that τμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mu $$\end{document} is differentiable over (0, 1] and the multifractal formalism holds for μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} at any α∈[τμ′(1),τμ′(0+)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [\tau _\mu '(1),\tau _\mu '(0+)]$$\end{document}. We also verify the validity of the multifractal formalism of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} over [τμ′(∞),τμ′(0+)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\tau _\mu '(\infty ),\tau _\mu '(0+)]$$\end{document} for two new classes of overlapping algebraic IFSs by showing that the asymptotically weak separation condition holds. For one of them, the proof appeals to the recent result of Shmerkin (Ann. Math. (2) 189(2):319–391, 2019) on the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spectrum of self-similar measures.
引用
收藏
页码:359 / 383
页数:24
相关论文
共 44 条
  • [11] Feng D-J(1962)Arithmetic properties of Bernoulli convolutions Trans. Am. Math. Soc. 102 409-432
  • [12] Feng D-J(2014)Lectures on dynamics, fractal geometry, and metric number theory J. Mod. Dyn. 8 437-497
  • [13] Feng D-J(2014)On self-similar sets with overlaps and inverse theorems for entropy Ann. Math. (2) 180 773-822
  • [14] Huyi H(2012)Local entropy averages and projections of fractal measures Ann. Math. (2) 175 1001-1059
  • [15] Feng D-J(2015)Equidistribution from fractal measures Invent. Math. 202 427-479
  • [16] Lau K-S(2001)Multifractal structure of convolution of the Cantor measure Adv. Appl. Math. 27 1-16
  • [17] Furstenberg H(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
  • [18] Garsia AM(2006)Fractals and self-similarity Commun. Math. Phys. 270 519-544
  • [19] Hochman M(1999)Multifractal measures and a weak separation condition Adv. Math. 141 45-96
  • [20] Hochman M(1997)A dimension result arising from the Proc. Am. Math. Soc. 125 2943-2951