On multifractal formalism for self-similar measures with overlaps

被引:0
作者
Julien Barral
De-Jun Feng
机构
[1] Université Sorbonne Paris Nord,Laboratoire de Géométrie, Analyse et Applications
[2] CNRS,Department of Mathematics
[3] UMR 7539,undefined
[4] The Chinese University of Hong Kong,undefined
来源
Mathematische Zeitschrift | 2021年 / 298卷
关键词
Multifractal formalism; Self-similar measures; Hausdorff dimension; Asymptotically weak separation condition; 28A80; 37C45;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be a self-similar measure generated by an IFS Φ={ϕi}i=1ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi =\{\phi _i\}_{i=1}^\ell $$\end{document} of similarities on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^d$$\end{document} (d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}). When Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} is dimensional regular (see Definition 1.1), we give an explicit formula for the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spectrum τμ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mu (q)$$\end{document} of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} over [0, 1], and show that τμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mu $$\end{document} is differentiable over (0, 1] and the multifractal formalism holds for μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} at any α∈[τμ′(1),τμ′(0+)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [\tau _\mu '(1),\tau _\mu '(0+)]$$\end{document}. We also verify the validity of the multifractal formalism of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} over [τμ′(∞),τμ′(0+)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\tau _\mu '(\infty ),\tau _\mu '(0+)]$$\end{document} for two new classes of overlapping algebraic IFSs by showing that the asymptotically weak separation condition holds. For one of them, the proof appeals to the recent result of Shmerkin (Ann. Math. (2) 189(2):319–391, 2019) on the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spectrum of self-similar measures.
引用
收藏
页码:359 / 383
页数:24
相关论文
共 44 条
  • [1] Barral J(2013)Multifractal formalism for almost all self-affine measures Commun. Math. Phys. 318 473-504
  • [2] Feng D-J(2020)Entropy of Bernoulli convolutions and uniform exponential growth for linear groups J. Anal. Math. 140 443-481
  • [3] Breuillard E(1992)Multifractal decompositions of Moran fractals Adv. Math. 92 196-236
  • [4] Varjú PP(1999)Generalized dimensions of measures on self-affine sets Nonlinearity 12 877-891
  • [5] Cawley R(2002)Relationships between different dimensions of a measure Monatsh. Math. 135 191-201
  • [6] Mauldin RD(2007)Gibbs properties of self-conformal measures and the multifractal formalism Ergod. Theory Dyn. Syst. 27 787-812
  • [7] Falconer KJ(2012)Multifractal analysis of Bernoulli convolutions associated with Salem numbers Adv. Math. 229 3052-3077
  • [8] Fan A-H(2009)Dimension theory of iterated function systems Commun. Pure Appl. Math. 62 1435-1500
  • [9] Lau K-S(2009)Multifractal formalism for self-similar measures with weak separation condition J. Math. Pures Appl. (9) 92 407-428
  • [10] Rao H(2008)Ergodic fractal measures and dimension conservation Ergod. Theory Dyn. Syst. 28 405-422