Testing the Hypothesis of the Independence of Two-Dimensional Random Variables Using a Nonparametric Algorithm for Pattern Recognition

被引:0
作者
A. V. Lapko
V. A. Lapko
机构
[1] Institute of Computational Modelling,
[2] Siberian Branch,undefined
[3] Russian Academy of Sciences,undefined
[4] Reshetnev Siberian State University of Science and Technology,undefined
来源
Optoelectronics, Instrumentation and Data Processing | 2021年 / 57卷
关键词
testing the hypothesis of the independence of random variables; two-dimensional random variables; pattern recognition; kernel probability density estimation; maximum-likelihood criterion; confidence estimation of probabilities;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:149 / 155
页数:6
相关论文
共 29 条
  • [1] Lapko A. V.(2012)Properties of nonparametric estimates of multidimensional probability density of independent random variables Inf. Sci. Control Syst. 31 166-174
  • [2] Lapko V. A.(2011)Nonparametric estimation of probability density of independent random variables Inf. Sci. Control Syst. 29 118-124
  • [3] Lapko A. V.(2012)Properties of the nonparametric decision function with a priori information on independence of attributes of classified objects Optoelectron., Instrum. Data Process. 48 416-422
  • [4] Lapko V. A.(2010)Nonparametric algorithms of pattern recognition in the problem of testing a statistical hypothesis on identity of two distribution laws of random variables Optoelectron., Instrum. Data Process. 46 545-550
  • [5] Lapko A. V.(2012)Comparison of empirical and theoretical distribution functions of a random variable on the basis of a nonparametric classifier Optoelectron., Instrum. Data Process. 48 37-41
  • [6] Lapko V. A.(2019)A technique for testing hypotheses for distributions of multidimensional spectral data using a nonparametric pattern recognition algorithm Comput. Optics 43 238-244
  • [7] Lapko A. V.(1962)On estimation of a probability density function and mode Ann. Math. Stat. 33 1065-1076
  • [8] Lapko V. A.(1969)Non-parametric estimation fo a multivariate probability density Theory Probab. Its Appl. 14 153-158
  • [9] Lapko A. V.(1976)On the choice of smoothing parameters for parzen estimators of probability density functions IEEE Trans. Comput. C-25 1175-1179
  • [10] Lapko V. A.(2008)Non-asymptotic bandwidth selection for density estimation of discrete data Methodol. Comput. Appl. Probab. 10 435-78