Stability of a modified Jordan–Brans–Dicke theory in the dilatonic frame

被引:0
|
作者
Genly Leon
Andronikos Paliathanasis
Luisberis Velazquez Abab
机构
[1] Universidad Católica del Norte,Departamento de Matemáticas
[2] Universidad Austral de Chile,Instituto de Ciencias Físicas y Matemáticas
[3] Durban University of Technology,Institute of Systems Science
[4] Universidad Católica del Norte,Departamento de Física
来源
General Relativity and Gravitation | 2020年 / 52卷
关键词
Modified gravity; Jordan–Brans–Dicke; Dark energy; Asymptotic structure; Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the Jordan–Brans–Dicke action in the cosmological scenario of FLRW spacetime with zero spatially curvature and with an extra scalar field minimally coupled to gravity as matter source. The field equations are studied in two ways. The method of group invariant transformations, i.e., symmetries of differential equations apply in order to constraint the free functions of the theory and determine conservation laws for the gravitational field equations. The second method that we apply for the study of the evolution of the field equations is the stability analysis of equilibrium points. Particularly, we find solutions with wtot=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\text {tot}}=-\,1$$\end{document}, and we study their stability by means of the Center Manifold Theorem. We show this solution is an attractor in the dilatonic frame but it is an intermediate accelerated solution a≃eAtp,p:=22+l,3257+6ω0<p<23,ast→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \simeq e^{A t^p}, p:=\frac{2}{2+l}, \quad \frac{32}{57+6 \omega _0}<p<\frac{2}{3}, \;\text {as}\; t\rightarrow \infty $$\end{document}, and not de Sitter solution. The exponent p is reduced, in a particular case, to the exponent already found for the Jordan’s and Einstein’s frames by Cid et al. (JCAP 1602(02):027, 2016). We obtain some equilibrium points which represent stiff solutions. Additionally, we find solutions that can be a phantom solution, a solution with wtot=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\text {tot}}=-\,1$$\end{document} or a quintessence solution. Other equilibrium points mimic a standard dark matter source (0<wtot<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<w_{\text {tot}}<1$$\end{document}), radiation (wtot=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\text {tot}}=\frac{1}{3}$$\end{document}), among other interesting features. For the dynamical system analysis we develop an extension of the method of F-devisers. The new approach relies upon two arbitrary functions h(λ,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\lambda , s)$$\end{document} and F(s). The main advantage of this procedure allows us to perform a phase-space analysis of the cosmological model without the need for specifying the potentials, revealing the full capabilities of the model.
引用
收藏
相关论文
共 50 条
  • [1] Stability of a modified Jordan-Brans-Dicke theory in the dilatonic frame
    Leon, Genly
    Paliathanasis, Andronikos
    Velazquez Abab, Luisberis
    GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (07)
  • [2] Brans-Dicke theory: Jordan versus Einstein frame
    Bhadra, A.
    Sarkar, K.
    Datta, D. P.
    Nandi, K. K.
    MODERN PHYSICS LETTERS A, 2007, 22 (05) : 367 - 375
  • [3] Chameleon effect in the Jordan frame of the Brans-Dicke theory
    Quiros, Israel
    Garcia-Salcedo, Ricardo
    Gonzalez, Tame
    Antonio Horta-Rangel, F.
    PHYSICAL REVIEW D, 2015, 92 (04):
  • [4] Observational constraints of the gravitational waves in the Brans-Dicke theory: Einstein frame and Jordan-Brans-Dicke frame
    Freitas, R. C.
    Concalves, S. V. B.
    PHYSICS LETTERS B, 2012, 710 (4-5) : 504 - 515
  • [5] Stability of the Einstein static universe in the Jordan-Brans-Dicke theory
    Huang, He
    Wu, Puxun
    Yu, Hongwei
    PHYSICAL REVIEW D, 2014, 89 (10):
  • [6] ON THE CONNECTION FOR THE BRANS-DICKE-JORDAN THEORY
    GURSES, M
    HALIL, M
    LETTERE AL NUOVO CIMENTO, 1980, 27 (17): : 562 - 564
  • [7] On the stability of Jordan-Brans-Dicke static universe
    del Campo, Sergio
    Herrera, Ramon
    Labrana, Pedro
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (07):
  • [8] Emergent universe in a Jordan-Brans-Dicke theory
    del Campo, Sergio
    Herrera, Ramon
    Labrana, Pedro
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (11):
  • [9] FIELDTHEORETIC CONSTRUCTION OF JORDAN-BRANS-DICKE-THEORY
    GRUNBERG, HV
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1971, A 26 (04): : 599 - +
  • [10] Intermediate Inflation in the Jordan-Brans-Dicke Theory
    Cid, Antonella
    del Campo, Sergio
    I COSMOSUL: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE, 2012, 1471 : 114 - 117