Profinite Completions and Canonical Extensions of Heyting Algebras

被引:0
|
作者
Guram Bezhanishvili
Mai Gehrke
Ray Mines
Patrick J. Morandi
机构
[1] New Mexico State University,Department of Mathematical Sciences
来源
Order | 2006年 / 23卷
关键词
profinite completion; canonical extension; duality theory; Heyting algebra; Primary 06D20; Secondary 06D50; 06B30, 03B55;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document} of a Heyting algebra H, and characterize the dual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document}. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical.
引用
收藏
页码:143 / 161
页数:18
相关论文
共 50 条
  • [41] Distinguishing 4-dimensional geometries via profinite completions
    Jiming Ma
    Zixi Wang
    Geometriae Dedicata, 2022, 216
  • [42] Distinguishing 4-dimensional geometries via profinite completions
    Ma, Jiming
    Wang, Zixi
    GEOMETRIAE DEDICATA, 2022, 216 (05)
  • [43] Esakia duals of regular Heyting algebras
    Grilletti, Gianluca
    Quadrellaro, Davide Emilio
    ALGEBRA UNIVERSALIS, 2024, 85 (01)
  • [44] Epimorphism surjectivity in varieties of Heyting algebras
    Moraschini, T.
    Wannenburg, J. J.
    ANNALS OF PURE AND APPLIED LOGIC, 2020, 171 (09)
  • [45] On Some Compatible Operations on Heyting Algebras
    Rodolfo Cristian Ertola Biraben
    Hernán Javier San Martín
    Studia Logica, 2011, 98 : 331 - 345
  • [46] Characterizations of near-Heyting algebras
    Luciano J. González
    Marina B. Lattanzi
    Ismael Calomino
    Sergio A. Celani
    European Journal of Mathematics, 2023, 9
  • [47] Expansions of Dually Pseudocomplemented Heyting Algebras
    Christopher J. Taylor
    Studia Logica, 2017, 105 : 817 - 841
  • [48] Esakia duals of regular Heyting algebras
    Gianluca Grilletti
    Davide Emilio Quadrellaro
    Algebra universalis, 2024, 85
  • [49] Expansions of Dually Pseudocomplemented Heyting Algebras
    Taylor, Christopher J.
    STUDIA LOGICA, 2017, 105 (04) : 817 - 841
  • [50] A Point-Free Approach to Canonical Extensions of Boolean Algebras and Bounded Archimedean l-Algebras
    Bezhanishvili, G.
    Carai, L.
    Morandi, P.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (02): : 257 - 287