Profinite Completions and Canonical Extensions of Heyting Algebras

被引:0
|
作者
Guram Bezhanishvili
Mai Gehrke
Ray Mines
Patrick J. Morandi
机构
[1] New Mexico State University,Department of Mathematical Sciences
来源
Order | 2006年 / 23卷
关键词
profinite completion; canonical extension; duality theory; Heyting algebra; Primary 06D20; Secondary 06D50; 06B30, 03B55;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document} of a Heyting algebra H, and characterize the dual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document}. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical.
引用
收藏
页码:143 / 161
页数:18
相关论文
共 50 条
  • [31] MV and Heyting effect algebras
    Foulis, DJ
    FOUNDATIONS OF PHYSICS, 2000, 30 (10) : 1687 - 1706
  • [32] Endomorphisms of complete heyting algebras
    A. Pultr
    J. Sichler
    Semigroup Forum, 1997, 54 : 364 - 374
  • [33] MV and Heyting Effect Algebras
    D. J. Foulis
    Foundations of Physics, 2000, 30 : 1687 - 1706
  • [34] PROFINITE PRO-C*-ALGEBRAS AND PRO-C*-ALGEBRAS OF PROFINITE GROUPS
    El Harti, Rachid
    Phillips, N. Christopher
    Pinto, Paulo R.
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 791 - 816
  • [35] Completions of Basic Algebras
    Alizadeh, Majid
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2009, 5514 : 72 - 83
  • [36] Canonical completions of lattices and ortholattices
    Harding, J
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 85 - 96
  • [37] Characteristic Formulas of Partial Heyting Algebras
    Citkin, Alex
    LOGICA UNIVERSALIS, 2013, 7 (02) : 167 - 193
  • [38] Discrete dualities for Heyting algebras with operators
    Orlowska, Ewa
    Rewitzky, Ingrid
    FUNDAMENTA INFORMATICAE, 2007, 81 (1-3) : 275 - 295
  • [39] On Some Compatible Operations on Heyting Algebras
    Ertola Biraben, R. C.
    San Martin, H. J.
    STUDIA LOGICA, 2011, 98 (03) : 331 - 345
  • [40] Characterizations of near-Heyting algebras
    Gonzalez, Luciano J.
    Lattanzi, Marina B.
    Calomino, Ismael
    Celani, Sergio A.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)