Profinite Completions and Canonical Extensions of Heyting Algebras

被引:0
|
作者
Guram Bezhanishvili
Mai Gehrke
Ray Mines
Patrick J. Morandi
机构
[1] New Mexico State University,Department of Mathematical Sciences
来源
Order | 2006年 / 23卷
关键词
profinite completion; canonical extension; duality theory; Heyting algebra; Primary 06D20; Secondary 06D50; 06B30, 03B55;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document} of a Heyting algebra H, and characterize the dual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document}. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical.
引用
收藏
页码:143 / 161
页数:18
相关论文
共 50 条
  • [21] CANONICAL EXTENSIONS AND COMPLETIONS OF POSETS AND LATTICES
    Gehrke, Mai
    Priestley, Hilary A.
    REPORTS ON MATHEMATICAL LOGIC, NO 43, 2008, (43): : 133 - +
  • [22] An equivalence of profinite completions
    Chang-Yeon Chough
    Journal of Homotopy and Related Structures, 2022, 17 : 297 - 307
  • [23] An equivalence of profinite completions
    Chough, Chang-Yeon
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2022, 17 (03) : 297 - 307
  • [24] Warped cones over profinite completions
    Sawicki, Damian
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2018, 10 (03) : 563 - 584
  • [25] Profiniteness and representability of spectra of Heyting algebras
    Bezhanishvili, G.
    Bezhanishvili, N.
    Moraschini, T.
    Stronkowski, M.
    ADVANCES IN MATHEMATICS, 2021, 391
  • [26] Model completions and r-Heyting categories
    Ghilardi, S
    Zawadowski, M
    ANNALS OF PURE AND APPLIED LOGIC, 1997, 88 (01) : 27 - 46
  • [27] Duality for double quasioperator algebras via their canonical extensions
    Gehrke M.
    Priestley H.A.
    Studia Logica, 2007, 86 (1) : 31 - 68
  • [28] Amenability and profinite completions of finitely generated groups
    Kionke, Steffen
    Schesler, Eduard
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (04) : 1235 - 1258
  • [29] ON HEYTING ALGEBRAS AND DUAL BCK-ALGEBRAS
    Yon, Y. H.
    Kim, K. H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (01) : 159 - 168
  • [30] On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals
    Flaminio, Tommaso
    Gilio, Angelo
    Godo, Lluis
    Sanfilippo, Giuseppe
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 159