Profinite Completions and Canonical Extensions of Heyting Algebras

被引:0
|
作者
Guram Bezhanishvili
Mai Gehrke
Ray Mines
Patrick J. Morandi
机构
[1] New Mexico State University,Department of Mathematical Sciences
来源
Order | 2006年 / 23卷
关键词
profinite completion; canonical extension; duality theory; Heyting algebra; Primary 06D20; Secondary 06D50; 06B30, 03B55;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document} of a Heyting algebra H, and characterize the dual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat{H}$\end{document}. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical.
引用
收藏
页码:143 / 161
页数:18
相关论文
共 50 条
  • [1] Profinite completions and canonical extensions of Heyting algebras
    Bezhanishvili, Guram
    Gehrke, Mai
    Mines, Ray
    Morandi, Patrick J.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (2-3): : 143 - 161
  • [2] PROFINITE HEYTING ALGEBRAS AND PROFINITE COMPLETIONS OF HEYTING ALGEBRAS
    Bezhanishvili, Guram
    Morandi, Patrick J.
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 29 - 47
  • [3] On profinite completions and canonical extensions
    Harding, John
    ALGEBRA UNIVERSALIS, 2006, 55 (2-3) : 293 - 296
  • [4] On profinite completions and canonical extensions
    John Harding
    algebra universalis, 2006, 55 : 293 - 296
  • [5] Natural extensions and profinite completions of algebras
    B. A. Davey
    M. J. Gouveia
    M. Haviar
    H. A. Priestley
    Algebra universalis, 2011, 66
  • [6] Natural extensions and profinite completions of algebras
    Davey, B. A.
    Gouveia, M. J.
    Haviar, M.
    Priestley, H. A.
    ALGEBRA UNIVERSALIS, 2011, 66 (03) : 205 - 241
  • [7] Canonical Extensions and Profinite Completions of Semilattices and Lattices
    M. J. Gouveia
    H. A. Priestley
    Order, 2014, 31 : 189 - 216
  • [8] Canonical Extensions and Profinite Completions of Semilattices and Lattices
    Gouveia, M. J.
    Priestley, H. A.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (02): : 189 - 216
  • [9] A note on profinite completions and canonical extensions
    Gouveia, Maria Joao
    ALGEBRA UNIVERSALIS, 2010, 64 (1-2) : 21 - 23
  • [10] A note on profinite completions and canonical extensions
    Maria João Gouveia
    Algebra universalis, 2010, 64 : 21 - 23