Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces

被引:0
|
作者
Lucas C. F. Ferreira
Lidiane S. M. Lima
机构
[1] IMECC,Departamento de Matemática
[2] Universidade Estadual de Campinas,undefined
来源
Monatshefte für Mathematik | 2014年 / 175卷
关键词
Active scalar equations; Global well-posedness; Self-similar solutions; Asymptotic behavior; 35Q35; 35A01; 35C06; 35B40; 35R11; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a family of dissipative active scalar equation with velocity fields coupled via multiplier operators that can be of positive-order. We consider sub-critical values for the fractional diffusion and prove global well-posedness of solutions with small initial data belonging to a framework based on Fourier transform, namely Fourier–Besov–Morrey spaces. Since the smallness condition is with respect to the weak norm of this space, some initial data with large L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-norm can be considered. Self-similar solutions are obtained depending on the homogeneity of the initial data and couplings. Also, we show that solutions are asymptotically self-similar at infinity. Our results can be applied in a unified way for a number of active scalar PDEs like 1D models on dislocation dynamics in crystals, Burgers’ equation, 2D vorticity equation, 2D generalized SQG, 3D magneto-geostrophic equations, among others.
引用
收藏
页码:491 / 509
页数:18
相关论文
共 50 条
  • [1] Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces
    Ferreira, Lucas C. F.
    Lima, Lidiane S. M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (04): : 491 - 509
  • [2] LERAY'S BACKWARD SELF-SIMILAR SOLUTIONS TO THE 3D NAVIER-STOKES EQUATIONS IN MORREY SPACES
    Wang, Yanqing
    Jiu, Quansen
    Wei, Wei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 2768 - 2791
  • [3] Self-similar Solutions of the Navier–Stokes Equations on Weak Weighted Lorentz Spaces
    Hong Liang LI
    Acta Mathematica Sinica,English Series, 2015, (01) : 44 - 60
  • [4] SELF-SIMILAR SOLUTIONS OF FRAGMENTATION EQUATIONS REVISITED
    Biedrzycka, Weronika
    Tyran-Kaminska, Marta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01): : 13 - 27
  • [5] Self-similar solutions of stationary Navier-Stokes equations
    Shi, Zuoshunhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 1550 - 1580
  • [6] Self-similar solutions of the Navier-Stokes equations on weak weighted Lorentz spaces
    Hong Liang Li
    Jie Cheng Chen
    Acta Mathematica Sinica, English Series, 2015, 31 : 44 - 60
  • [7] Self-similar Solutions of the Navier-Stokes Equations on Weak Weighted Lorentz Spaces
    Li, Hong Liang
    Chen, Jie Cheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) : 44 - 60
  • [8] Self-similar solutions for the fractional viscous Burgers equation in Marcinkiewicz spaces
    de Oliveira, Edmundo Capelas
    Lima, Maria Elismara de Sousa
    Viana, Arlucio
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [9] The self-similar solutions of the Tricomi-type equations
    Yagdjian, Karen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (04): : 612 - 645
  • [10] Self-similar solutions to the compressible Euler equations and their instabilities
    Biasi, Anxo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103