Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing

被引:1
|
作者
Guiwei Li
Ji Zhao
Jili Jiang
Hao Jiang
Wenzheng Wu
Mengxin Tang
机构
[1] Jilin University,School of Mechanical Science and Engineering
来源
The International Journal of Advanced Manufacturing Technology | 2018年 / 96卷
关键词
3D printing; Ultrasonic strengthening; Fused deposition modeling; Additive manufacturing;
D O I
暂无
中图分类号
学科分类号
摘要
Wire-by-wire and layer-by-layer printing processes used in fused deposition modeling (FDM) three-dimensional (3D) printed parts result in poor mechanical properties. In this study, 3D printed acrylonitrile butadiene styrene (ABS) samples strengthened by ultrasonic vibrations are studied by a controlled variate method. The effects of ultrasonic strengthening pressure and ultrasonic strengthening time on the tensile mechanical properties of samples are studied. The tensile strength of the samples increases by 11.3%, the Young’s modulus increases by 16.7%, and the surface roughness decreases after ultrasonic strengthening. Ultrasonic strengthening after FDM 3D printing significantly improves the tensile mechanical properties of the sample and broadens the potential applications for FDM 3D printing technology.
引用
收藏
页码:2747 / 2755
页数:8
相关论文
共 50 条
  • [21] Direct 3D-printing of phosphate glass by fused deposition modeling
    Zaki, Reda Mohammed
    Strutynski, Clement
    Kaser, Simon
    Bernard, Dominique
    Hauss, Gregory
    Faessel, Matthieu
    Sabatier, Jocelyn
    Canioni, Lionel
    Messaddeq, Younes
    Danto, Sylvain
    Cardinal, Thierry
    MATERIALS & DESIGN, 2020, 194
  • [22] Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
    Hwang, Seyeon
    Reyes, Edgar I.
    Moon, Kyoung-sik
    Rumpf, Raymond C.
    Kim, Nam Soo
    JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (03) : 771 - 777
  • [23] Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
    Seyeon Hwang
    Edgar I. Reyes
    Kyoung-sik Moon
    Raymond C. Rumpf
    Nam Soo Kim
    Journal of Electronic Materials, 2015, 44 : 771 - 777
  • [24] Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM)
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (05) : 502 - 504
  • [25] 3D printing of biodegradable biocomposites based on forest industrial residues by fused deposition modeling
    Helaoui, Sarra
    Koubaa, Ahmed
    Nouri, Hedi
    Beauregard, Martin
    Guessasma, Sofiane
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [26] A recent review on advancements in dimensional accuracy in fused deposition modeling (FDM) 3D printing
    Equbal, Azhar
    Murmu, Ramesh
    Kumar, Veenit
    Equbal, Md. Asif
    AIMS MATERIALS SCIENCE, 2024, 11 (05) : 950 - 990
  • [27] Fused deposition modeling 3D printing of polyamide-based composites and its applications
    Zhang, Xu
    Fan, Wei
    Liu, Tianxi
    COMPOSITES COMMUNICATIONS, 2020, 21
  • [28] Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing
    Xu, Pengchong
    Li, Jiangwei
    Meda, Alvin
    Osei-Yeboah, Frederick
    Peterson, Matthew L.
    Repka, Michael
    Zhan, Xi
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 588
  • [29] Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites
    Rahim, Tuan Noraihan Azila Tuan
    Abdullah, Abdul Manaf
    Akil, Hazizan Md
    POLYMER REVIEWS, 2019, 59 (04) : 589 - 624
  • [30] Metal 3D Printing by Fused Deposition Modeling (FDM) with Metal Powder Filament Materials
    Minh P.S.
    Toan H.D.S.
    Son T.A.
    Defect and Diffusion Forum, 2022, 417 : 61 - 65