The principle of maximal transcendentality and the four-loop collinear anomalous dimension

被引:0
作者
Lance J. Dixon
机构
[1] Stanford University,SLAC National Accelerator Laboratory
来源
Journal of High Energy Physics | / 2018卷
关键词
Scattering Amplitudes; Supersymmetric Gauge Theory; 1/N Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We use the principle of maximal transcendentality and the universal nature of subleading infrared poles to extract the analytic value of the four-loop collinear anomalous dimension in planar N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory from recent QCD results, obtaining G^04=−300ζ7−256ζ2ζ5−384ζ3ζ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\widehat{\mathcal{G}}}_0^{(4)}=-300{\zeta}_7-256{\zeta}_2{\zeta}_5-384{\zeta}_3{\zeta}_4 $$\end{document}. This value agrees with a previous numerical result to within 0.2%. It also provides the Regge trajectory, threshold soft anomalous dimension and rapidity anomalous dimension through four loops.
引用
收藏
相关论文
共 187 条
  • [31] Drummond JM(2012)Correspondence between soft and rapidity anomalous dimensions JHEP 05 161601-undefined
  • [32] Henn J(2017)Three-loop leading singularities and BDS ansatz for five particles Phys. Rev. Lett. 118 077-undefined
  • [33] Korchemsky GP(2008)Four-loop photon quark form factor and cusp anomalous dimension in the large-N Phys. Rev. D 78 038-undefined
  • [34] Sokatchev E(2017) limit of QCD JHEP 03 002-undefined
  • [35] Drummond JM(2017)Four-loop non-singlet splitting functions in the planar limit and beyond JHEP 10 105-undefined
  • [36] Henn J(2007)Dressing and wrapping J. Stat. Mech. 0710 024-undefined
  • [37] Korchemsky GP(2012) = 4 JHEP 05 001-undefined
  • [38] Sokatchev E(2015)On-shell methods for the two-loop dilatation operator and finite remainders JHEP 10 022-undefined
  • [39] Bern Z(2016) SU(2|3) JHEP 08 90-undefined
  • [40] Drummond JM(2016) SL(2) JHEP 12 231-undefined