Some Fourier series with gaps

被引:0
作者
Fernando Chamizo
Adrián Ubis
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas, Facultad de Ciencias
来源
Journal d'Analyse Mathématique | 2007年 / 101卷
关键词
Fractal Dimension; Fourier Series; Hausdorff Dimension; Diophantine Approximation; Hurwitz Zeta Function;
D O I
暂无
中图分类号
学科分类号
摘要
We examine diverse local and global aspects of the family of Fourier series ∑n−αe(nkx). In particular, combining number theoretical and harmonic analytic arguments, we study differentiability, Hölder continuity, spectrum of singularities and fractal dimension of the graph.
引用
收藏
页码:179 / 197
页数:18
相关论文
共 21 条
  • [1] Butzer P. I.(1986)“Riemann’s example” of a continuous nondifferentiable function in the light of two letters (1865) of Christoffel to Prym Bull. Soc. Math. Belg. 38 45-73
  • [2] Stark E. I.(2004)Automorphic forms and differentiability properties Trans. Amer. Math. Soc. 356 1909-1935
  • [3] Chamizo F.(1999)Differentiability and dimension of some fractal Fourier series Adv. Math. 142 335-354
  • [4] Chamizo F.(1991)Self-similarity of “Riemann’s nondifferentiable function,” Nieuw Arch. Wisk. (4) 9 303-337
  • [5] Córdoba A.(1970)On the distribution of the convergents of almost all real numbers J. Number Theory 2 425-441
  • [6] Duistermaat J. J.(1970)The differentiability of the Riemann function at certain rational multiples of π Amer. J. Math. 92 33-55
  • [7] Erdős P.(2003)On cubic lacunary Fourier series Trans. Amer. Math. Soc. 355 4297-4347
  • [8] Gerver J. L.(1916)Weierstrass’s non-differentiable function Trans. Amer. Math. Soc. 17 301-325
  • [9] Gerver J. L.(1914)Some problems in diophantine approximation II Acta Math. 37 194-238
  • [10] Hardy G. H.(1988)Weyl’s inequality, Hua’s inequality, and Waring’s problem J. London Math. Soc. (2) 38 216-230