Modules Over the Noncommutative Torus and Elliptic Curves

被引:0
作者
Francesco D’Andrea
Gaetano Fiore
Davide Franco
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
[2] I.N.F.N.,undefined
[3] Sezione di Napoli,undefined
[4] Complesso MSA,undefined
来源
Letters in Mathematical Physics | 2014年 / 104卷
关键词
Primary 58B34; Secondary 46L87; 53D55; noncommutative torus; imprimitivity bimodules; elliptic curves; Moyal deformation;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Weil–Brezin–Zak transform of solid state physics, we describe line bundles over elliptic curves in terms of Weyl operators. We then discuss the connection with finitely generated projective modules over the algebra Aθ of the noncommutative torus. We show that such Aθ-modules have a natural interpretation as Moyal deformations of vector bundles over an elliptic curve Eτ, under the condition that the deformation parameter θ and the modular parameter τ satisfy a non-trivial relation.
引用
收藏
页码:1425 / 1443
页数:18
相关论文
共 18 条
[1]  
Atiyah M.F.(1957)Vector bundles over an elliptic curve Proc. Lond. Math. Soc. 7 414-452
[2]  
Connes A.(1980)-algèbres et géométrie différentielle C. R. Acad. Sci. Paris 290A 599-604
[3]  
Connes A.(1987)Yang-Mills for noncommutative two-tori Contemp. Math. 62 237-266
[4]  
Rieffel M.A.(1989)Quasi-Hopf algebras Leningrad Math. J. 1 1419-1457
[5]  
Drinfeld V.G.(2013)On quantum mechanics with a magnetic field on Int. J. Theor. Phys. 52 877-896
[6]  
Fiore G.(2004) and on a torus Commun. Math. Phys. 246 569-623
[7]  
Gayral V.(2009) , and their relation J. Noncommut. Geom. 3 261-287
[8]  
Gracia-Bondía J.M.(2003)Moyal planes are spectral triples Commun. Math. Phys. 236 135-159
[9]  
Iochum B.(2004)Noncommutative tori and the Riemann–Hilbert correspondence J. Geom. Phys. 50 162-187
[10]  
Schücker T.(1983)Categories of holomorphic vector bundles on noncommutative two-tori Proc. Lond. Math. Soc. 47 285-302