Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating

被引:0
作者
Chaofan Chen
Haibing Shao
Dmitri Naumov
Yanlong Kong
Kun Tu
Olaf Kolditz
机构
[1] Helmholtz Centre for Environmental Research (UFZ),Applied Environmental Systems Analysis
[2] Dresden University of Technology,Institute of Geology and Geophysics
[3] Freiberg University of Mining and Technology,Department of Environmental Sciences
[4] Chinese Academy of Sciences,undefined
[5] China University of Mining and Technology (Beijing),undefined
[6] University of California,undefined
来源
Geothermal Energy | / 7卷
关键词
Deep borehole heat exchanger system; Performance; Sustainability; Temperature recovery ratio; Coefficient of system performance (CSP);
D O I
暂无
中图分类号
学科分类号
摘要
In densely inhabited urban areas, deep borehole heat exchangers (DBHE) have been proposed to be integrated with the heat pump in order to utilize geothermal energy for building heating purposes. In this work, a comprehensive numerical model was constructed with the OpenGeoSys (OGS) software applying the dual-continuum approach. The model was verified against analytical solution, as well as by comparing with the integrated heat flux distribution. A series of modeling scenarios were designed and simulated in this study to perform the DBHE system analysis and to investigate the influence of pipe materials, grout thermal conductivity, geothermal gradient, soil thermal conductivity, and groundwater flow. It was found that the soil thermal conductivity is the most important parameter for the DBHE system performance. Both thermally enhanced grout and the thermally insulated inner pipe will elevate the outflow temperature of the DBHE. With an elevated geothermal gradient of 0.04 °C m−1, the short-term sustainable specific heat extraction rate imposed on the DBHE can be increased to 150–200 W m−1. The quantification of maximum heat extraction rate was conducted based on the modeling of 30-year-long operation scenarios. With a standard geothermal gradient of 0.03 °C m−1, the extraction rate has to be kept below 125 W m−1 in the long-term operation. To reflect the electricity consumption by circulating pump, the coefficient of system performance (CSP) was proposed in this work to better quantify the system efficiency. With the typical pipe structure and flow rate specified in this study, it is found that the lower limit of the DBHE system is at a CSP value of 3.7. The extended numerical model presented in this study can be applied to the design and optimization of DBHE-coupled ground source heat pump systems.
引用
收藏
相关论文
共 50 条
  • [31] Influencing factors analysis and operation optimization for the long-term performance of medium-deep borehole heat exchanger coupled ground source heat pump system
    Liu, Jun
    Wang, Fenghao
    Gao, Yuan
    Zhang, Yuping
    Cai, Wanlong
    Wang, Ming
    Wang, Zhihua
    ENERGY AND BUILDINGS, 2020, 226
  • [32] Numerical and experimental investigation of the heat exchanger with trapezoidal baffle
    Gu, Xin
    Luo, Yuankun
    Xiong, Xiaochao
    Wang, Ke
    Wang, Yongqing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 598 - 606
  • [33] A semi-analytical heat transfer model for deep borehole heat exchanger considering groundwater seepage
    Wang, Changlong
    Wang, Xin
    Lu, Jinli
    Lu, Yuehong
    Sun, Yanhong
    Zhang, Pengyuan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 175
  • [35] Application of a thermal transient subsurface model to a coaxial borehole heat exchanger system
    Abdelhafiz, Mostafa M.
    Oppelt, Joachim F.
    Brenner, Gunther
    Hegele Jr, Luiz A.
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 227
  • [36] Performance study of a sustainable solar heating system based on a copper coil water to air heat exchanger for greenhouse heating
    Ihoume, I.
    Tadili, R.
    Arbaoui, N.
    Bazgaou, A.
    Idrissi, A.
    Benchrifa, M.
    Fatnassi, H.
    SOLAR ENERGY, 2022, 232 : 128 - 138
  • [37] Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger
    Nam, Yujin
    Chae, Ho-Byung
    ENERGY, 2014, 73 : 933 - 942
  • [38] Effect of groundwater advection on heat transfer performance of deep borehole heat exchangers
    Jiao K.
    Sun C.
    Bai B.
    Yang R.
    Natural Gas Industry, 2022, 42 (04) : 85 - 93
  • [39] Numerical and experimental investigation of buoyancy effects in a plate heat exchanger
    Gherasim, Iulian
    Taws, Matthew
    Galanis, Nicolas
    Cong Tam Nguyen
    APPLIED THERMAL ENGINEERING, 2013, 51 (1-2) : 347 - 363
  • [40] Research on the natural circulation characteristic of deep borehole heat exchanger and the influences on the water circulation resistance
    Deng, Jiewen
    Wang, Yanhui
    Su, Yangyang
    Wang, Yuanguo
    Chen, Yin
    Ma, Minghui
    Peng, Chenwei
    Cai, Wanlong
    Li, Ji
    Wei, Qingpeng
    BUILDING SIMULATION, 2024, 17 (12) : 2213 - 2232