Heavy-to-light scalar form factors from Muskhelishvili–Omnès dispersion relations

被引:0
作者
D. -L. Yao
P. Fernandez-Soler
M. Albaladejo
F. -K. Guo
J. Nieves
机构
[1] Institutos de Investigación de Paterna,Instituto de Física Corpuscular (centro mixto CSIC
[2] Universidad de Murcia,UV)
[3] Chinese Academy of Sciences,Departamento de Física
[4] University of Chinese Academy of Sciences,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
By solving the Muskhelishvili–Omnès integral equations, the scalar form factors of the semileptonic heavy meson decays D→πℓ¯νℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\rightarrow \pi \bar{\ell }\nu _\ell $$\end{document}, D→K¯ℓ¯νℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\rightarrow {\bar{K}} \bar{\ell }\nu _\ell $$\end{document}, B¯→πℓν¯ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{B}}\rightarrow \pi \ell \bar{\nu }_\ell $$\end{document} and B¯s→Kℓν¯ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{B}}_s\rightarrow K \ell \bar{\nu }_\ell $$\end{document} are simultaneously studied. As input, we employ unitarized heavy meson–Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omnès matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2=0$$\end{document} as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2=0$$\end{document}, we obtain |Vcd|=0.244±0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cd}|=0.244\pm 0.022$$\end{document}, |Vcs|=0.945±0.041\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|=0.945\pm 0.041$$\end{document} and |Vub|=(4.3±0.7)×10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{ub}|=(4.3\pm 0.7)\times 10^{-3}$$\end{document} for the involved Cabibbo–Kobayashi–Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2=0$$\end{document}: |f+D→η(0)|=0.01±0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f_+^{D\rightarrow \eta }(0)|=0.01\pm 0.05$$\end{document}, |f+Ds→K(0)|=0.50±0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f_+^{D_s\rightarrow K}(0)|=0.50 \pm 0.08$$\end{document}, |f+Ds→η(0)|=0.73±0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f_+^{D_s\rightarrow \eta }(0)|=0.73\pm 0.03$$\end{document} and |f+B¯→η(0)|=0.82±0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f_+^{{\bar{B}}\rightarrow \eta }(0)|=0.82 \pm 0.08$$\end{document}, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2-$$\end{document}regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.
引用
收藏
相关论文
共 203 条
[1]  
Duplancic G(2008)undefined JHEP 04 014-undefined
[2]  
Khodjamirian A(2008)undefined Phys. Rev. D 78 054015-undefined
[3]  
Mannel T(2012)undefined JHEP 05 092-undefined
[4]  
Melic B(2010)undefined Phys. Rev. D 82 114506-undefined
[5]  
Offen N(2011)undefined Phys. Rev. D 84 114505-undefined
[6]  
Duplancic G(2014)undefined Phys. Rev. D 90 054506-undefined
[7]  
Melic B(2015)undefined Phys. Rev. D 91 074510-undefined
[8]  
Bharucha A(2017)undefined Eur. Phys. J. C 77 112-undefined
[9]  
Na H(1995)undefined Phys. Rev. D 52 2783-undefined
[10]  
Davies CTH(2006)undefined Phys. Lett. B 633 61-undefined