Nonisothermal and Isothermal Oxidation Behavior of Nb-Si-Mo Alloys

被引:0
作者
K. Chattopadhyay
R. Mitra
K.K. Ray
机构
[1] Indian Institute of Technology,Department of Metallurgical and Materials Engineering
来源
Metallurgical and Materials Transactions A | 2008年 / 39卷
关键词
Oxide Scale; Nb2O5; Mass Gain; Isothermal Oxidation; Hypereutectic Alloy;
D O I
暂无
中图分类号
学科分类号
摘要
The nonisothermal and isothermal oxidation behavior of arc-melted, hypereutectic Nb-19Si-5Mo, Nb-18Si-26Mo, and hypoeutectic Nb-13Si-4Mo, and Nb-12Si-15Mo ternary alloys have been investigated vis-à-vis that of Nb and Nb-10Si alloy. The nonisothermal studies carried out using simultaneous thermogravimetric and differential thermal analysis in the temperature range of 50 °C to 1300 °C using heating rates of 5 °C, 15 °C/min, 25 °C/min, and 40 °C/min have shown oxidation initiation at lower temperatures for slower heating rates and higher Mo content. Isothermal oxidation experiments have been carried out in dry air at 800 °C, 1000 °C, and 1150 °C for 24 hours and the kinetics have been examined by the power-law equation. The studies show that the ternary Nb-Si-Mo alloys undergo less mass gain compared to the Nb and the Nb-10Si alloy. The hypo- or hypereutectic character of the alloys controls the oxidation behavior at 800 °C, while the effect of Mo content is predominant at temperatures of 1000 °C to 1150 °C. X-ray diffraction and scanning electron microscopy (SEM) accompanied by energy dispersive X-ray analysis have shown that the oxide scales of all the alloys are made of Nb2O5 and SiO2. The beneficial effect of alloying with Mo is attributed to the improved sinterability of the oxide scale and increase in the activity of Si, which assists in the formation of a stable and continuous layer of SiO2 at the alloy-oxide interface.
引用
收藏
页码:577 / 592
页数:15
相关论文
共 50 条
  • [21] Isothermal Oxidation Behavior of Dysprosium/S-Doped β-NiAl Alloys at 1200 °C
    Wang, Lu
    Li, Dongqing
    Chang, Jian
    Guo, Hongbo
    Gong, Shengkai
    Xu, Huibin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2014, 30 (03) : 229 - 233
  • [22] Isothermal Oxidation Behavior of Dysprosium/S-Doped β-NiAl Alloys at 1200°C
    Lu Wang
    Dongqing Li
    Jian Chang
    Hongbo Guo
    Shengkai Gong
    Huibin Xu
    JournalofMaterialsScience&Technology, 2014, 30 (03) : 229 - 233
  • [23] Improving oxidation resistance of TaMoZrTiAl refractory high entropy alloys via Nb and Si alloying
    Guo, Yueling
    Peng, Jian
    Peng, Siyi
    An, Fengchao
    Lu, Wenjun
    Li, Zhiming
    CORROSION SCIENCE, 2023, 223
  • [24] Microstructure and isothermal oxidation behavior of Nb-Ti-Si-based alloy additively manufactured by powder-feeding laser directed energy deposition
    Li, Yunlong
    Lin, Xin
    Hu, Yunlong
    Gao, Xuehao
    Yu, Jun
    Qian, M.
    Dong, Hongbiao
    Huang, Weidong
    CORROSION SCIENCE, 2020, 173
  • [25] Isothermal oxidation behaviour of beta gamma powder metallurgy TiAl-4Nb-3Mn alloys
    Kim, D. J.
    Seo, D. Y.
    Yang, Q.
    Saari, H.
    Sawatzky, T.
    Kim, Y. -W.
    CANADIAN METALLURGICAL QUARTERLY, 2011, 50 (04) : 416 - 424
  • [26] Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys
    Cao, Yuan-kui
    Liu, Yong
    Liu, Bin
    Zhang, Wei-dong
    Wang, Jia-wen
    Du, Meng
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2019, 29 (07) : 1476 - 1483
  • [27] The effects of Cr on isothermal oxidation behavior of Fe-30Mn-6Si alloy
    Balo, S. Nevin
    Yakuphanoglu, F.
    THERMOCHIMICA ACTA, 2013, 560 : 43 - 46
  • [28] The Effect of Ge Addition on the Oxidation of Nb-24Ti-18Si Silicide Based Alloys
    Li, Zifu
    Tsakiropoulos, Panos
    MATERIALS, 2019, 12 (19)
  • [29] Surface oxidation behavior of spark plasma sintered AlCrCuFeMnWx high entropy alloys at an elevated isothermal temperature
    Dewangan, Sheetal Kumar
    Kumar, Devesh
    Kumar, Vinod
    Ahn, Byungmin
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 119
  • [30] Oxidation behavior of a Mo(Si,Al)2 composite at 900–1600 °C in dry air
    L. Ingemarsson
    K. Hellström
    S. Canovic
    T. Jonsson
    M. Halvarsson
    L.-G. Johansson
    J.-E. Svensson
    Journal of Materials Science, 2013, 48 : 1511 - 1523