Upper Bound for the Diameter of a Tree in the Quantum Graph Theory

被引:0
作者
O. P. Boyko
O. M. Martynyuk
V. M. Pivovarchik
机构
[1] K. Ushyns’kyi South Ukrainian National Pedagogic University,
来源
Ukrainian Mathematical Journal | 2023年 / 74卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study two Sturm–Liouville spectral problems on an equilateral tree with continuity and Kirchhoff conditions at the internal vertices and Neumann conditions at the pendant vertices (first problem) and with Dirichlet conditions at the pendant vertices (second problem). The spectrum of each of these problems consists of infinitely many normal (isolated Fredholm) eigenvalues. It is shown that if we know the asymptotics of eigenvalues, then it is possible to estimate the diameter of a tree from above for each of these problems.
引用
收藏
页码:1165 / 1174
页数:9
相关论文
共 6 条
  • [1] Barioli F(2004)On two conjectures regarding an inverse eigenvalue problem for acyclic symmetric matrices Electron. J. Linear Algebra 11 41-50
  • [2] Fallat S(1997)The spectrum of the continuous Laplacian on a graph Monatsh. Math. 124 215-235
  • [3] Cattaneo C(2004)Wave equations for graphs and the edge-based Laplacian Pacific J. Math. 216 229-266
  • [4] Friedman J(2019)On multiplicities of eigenvalues of a boundary value problem on a snowflake graph Linear Algebra, Appl. 571 78-91
  • [5] Tillich J-P(undefined)undefined undefined undefined undefined-undefined
  • [6] Pivovarchik V(undefined)undefined undefined undefined undefined-undefined