Noetherian Rings whose Modules are Prime Serial

被引:0
作者
M. Behboodi
Z. Fazelpour
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Algebras and Representation Theory | 2017年 / 20卷
关键词
Serial rings; Serial modules; Prime submodules; -serial rings; -serial modules; Primary 13A18; 13F30; 16D70 Secondary 13C99;
D O I
暂无
中图分类号
学科分类号
摘要
A theorem due to Nakayama and Skornyakov states that “a ring R is an Artinian serial ring if and only if all left R-modules are serial” and a theorem due to Warfield state that “a Noetherian ring R is serial if and only if every finitely generated left R-module is serial”. We say that an R-module M is prime uniserial (℘-uniserial, for short) if for every pair P, Q of prime submodules of M either P⊆Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P\subseteq Q$\end{document} or Q⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q\subseteq P$\end{document}, and we say that M is prime serial (℘-serial, for short) if it is a direct sum of ℘-uniserial modules. Therefore, two interesting natural questions of this sort are: “Which rings have the property that every module is ℘-serial?” and “Which rings have the property that every finitely generated module is ℘-serial?” Most recently, in our paper, Prime uniserial modules and rings (submitted), we considered these questions in the context of commutative rings. The goal of this paper is to answer these questions in the case R is a Noetherian ring in which all idempotents are central or R is a left Artinian ring.
引用
收藏
页码:245 / 255
页数:10
相关论文
共 38 条
[1]  
Asano K(1939)Über verallgemeinerte Ablsche Gruppe mit hyperkomplexen Operatorenring und ihre Anwedungen Jap. J. Math. 15 231-253
[2]  
Asano K(1949)Über Hauptidealringe mit Kettensatz Osaka Math. J. 1 52-61
[3]  
Behboodi M(2006)A generalization of the classical Krull dimension for modules J. Algebra 305 1128-1148
[4]  
Behboodi M(2014)On left Kothe rings and a generalization of a Kothe-Cohen-Kaplansky theorem Proc. Amer. Math. Soc. 8 2625-2631
[5]  
Ghorbani A(1960)Direct products of modules Trans. Amer. Math. Soc. 97 457-473
[6]  
Morazadeh-Dehkordi A(1951)Rings for which every module is a direct sum of cyclic modules Math. Z. 54 97-101
[7]  
Shojaee SH(1978)Prime modules J. Reine Angew. Math. 298 156-181
[8]  
Chase SU(1966)On Köthe rings Math. Ann. 164 207-212
[9]  
Cohen IS(1967)Hamsher, Commutative rings over which every module has a maximal submodule Proc. Amer. Math. Soc. 18 1133-1137
[10]  
Kaplansky I(1949)Elementary divisor and modules Trans. Amer. Math. Soc. 66 464-491