Reduced Words and Plane Partitions

被引:0
作者
Sergey Fomin
Anatol N. Kirillov
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] Russian Academy of Sciences,Theory of Algorithms Laborator , St. Petersburg Institute of Informatics
[3] University of Tokyo,Department of Mathematical Sciences
[4] Russian Academy of Sciences,Steklov Mathematical Institute
[5] St. Petersburg Branch,undefined
来源
Journal of Algebraic Combinatorics | 1997年 / 6卷
关键词
reduced word; plane partition; Schubert polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
Let w0 be the element of maximal length in thesymmetric group Sn, and let Red(w0) bethe set of all reduced words for w0. We prove the identity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{(a_1 ,a_2 , \ldots ) \in Red(w_0 )} {(x + a_1 )(x + a_2 )} \cdots = \left( {_2^n } \right)!\prod\limits_{1 \leqslant i < j \leqslant n} {\frac{{2x + i + j - 1}}{{i + j - 1}}} ,$$ \end{document}which generalizes Stanley's [20] formula forthe cardinality of Red(w0), and Macdonald's [11] formula\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum {a_1 a_2 \cdots = (_2^n )} !$$ \end{document}.Our approach uses anobservation, based on a result by Wachs [21], that evaluation of certainspecializations of Schubert polynomials is essentially equivalent toenumeration of plane partitions whose parts are bounded from above. Thus,enumerative results for reduced words can be obtained from the correspondingstatements about plane partitions, and vice versa. In particular, identity(*) follows from Proctor's [14] formula for the number of planepartitions of a staircase shape, with bounded largest part.Similar results are obtained for other permutations and shapes;q-analogues are also given.
引用
收藏
页码:311 / 319
页数:8
相关论文
共 23 条
[1]  
Billey S.C.(1993)Some combinatorial properties of Schubert polynomials J. Alg. Combin. 2 345-374
[2]  
Jockusch W.(1987)Balanced tableaux Advances in Math. 63 42-99
[3]  
Stanley R.P.(1994)Schubert polynomials and the nilCoxeter algebra Advances in Math. 103 196-207
[4]  
Edelman P.(1996)The Yang-Baxter equation, symmetric functions, and Schubert polynomials Discrete Math. 153 123-143
[5]  
Greene C.(1997)Balanced labellings and Schubert polynomials European J. Combin. 8 373-389
[6]  
Fomin S.(1987)Young-diagrammatic methods for the representation theory of the classical groups of type B J. Algebra 107 466-511
[7]  
Stanley R.P.(1988), C Invent. Math. 92 307-332
[8]  
Fomin S.(1990), D European J. Combin. 11 289-300
[9]  
Kirillov A.N.(1995)Odd symplectic groups J. Combin. Theory, Ser. A 70 107-143
[10]  
Fomin S.(1971)New symmetric plane partition identities from invariant theory work of De Concini and Procesi Studies in Appl. Math. 50 167-188